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Abstract: This paper presents a comparison between two identification methods for the 
off-line identification of non linear models of Unmanned Underwater Vehicles (UUV’s), 
one based on the minimization of the acceleration prediction error (classic method) and 
another based on the minimization of the velocity one step prediction error (new method). 
Both methods are compared through its application to the identification of the dynamic 
model of URIS UUV. Results suggest that better models can be obtained using the 
proposed method 
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1. INTRODUCTION 
 
The application of system identification techniques 
to naval vehicles is concerned with the estimation, on 
the basis of experimental measurements, of a number 
of parameters or of hydrodynamic derivatives that 
characterise the vehicle’s dynamics (Abkowitz, 
1980). Such measurements, collected during full-
scale trials by the on-board sensors, are processed by 
a parameter estimation routine (Ljung, 1987). 
 
The identification methods that, in the recent years, 
have been proposed for UUV identification generally 
operate off-line and the underlying mathematical 
models are of the scalar type. Furthermore, they are 
essentially deterministic, since the effects of 
disturbances affecting the UUV dynamics and of 
measurement noise are not taken into consideration 
(Caccia, et al., 2000). An on-line deterministic 
identification method that has been most recently 
proposed (Smallwood and Whitcomb, 2001) is 
limited to scalar decoupled models. 
 
Most of methods used for identification of the uncoupled 
dynamics equation of an UUV are based on the 
minimization of the acceleration prediction error, usually 
applying LS estimation techniques (in the following we 
will call this method “the classical” method) (Ridao, 2001). 
Recently we proposed to carry out the identification using 
the one step integral of the dynamics equation (Tiano, 
2002 & Carreras, 2003). In this case LS is used to estimate 
the model parameters which minimize the one step 
prediction error of the velocity (in the following we will 
call this method “the new” method). In this paper we 
compare the results obtained with both methods, through 
exhaustive experimentation with URIS UUV. (See Fig. 1). 
   

A brief review of the UUV mathematical models 
generally used in the literature is presented in sub-
section 1.1 of this paper. In section 2 the two methods 
of identification used are presented, the classic and the 
new one. In section 3 a description of URIS underwater 
robotic vehicle is reported and, in section 4, the 
comparison of the identification results obtained with 
both methods for the identification of URIS surge DOF 
are shown, also we expose the results for the other 
identified DOF’s: pitch and yaw. Finally some 
concluding remarks are done in section 5. 
 
 
1.1 UUV Mathematical models 
 
As described in the literature (Fossen, 1994), the 
non-linear hydrodynamic equation of motion of an 
underwater vehicle with 6 DOF, in the body fixed 
frame, can be conveniently expressed as: 
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Identification of the complete set of coefficients and 
hydrodynamic derivatives which appear in Equation 
(1) is a rather complex task. The identification 
problem can be much more easily approached if the 
following simplifications are applied: 
 

• D(Bν) consists of the lineal and quadratic 
damping  forces and can be assumed 
diagonal. 

• BMRB and  BMA can be assumed diagonal 
(this is true for URIS UUV due to its 
spherical shape see section 3). 

• the body frame is located at the gravity centre 



     

 
Moreover, if the robot is actuated in a single DOF 
during the identification experiments, further 
simplifications can be carried out. For instance, let’s 
consider the dynamic equation for the surge DOF: 
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which follows the standard notation proposed in  
(Fossen, 1994). If we excite the robot in a single 
DOF, surge in this case, in such a way that: 
 

• u≠0  and  v=w=p=q=r=0 
• θ=φ=0 

 
then we run an uncoupled experiment so, equation 
(2) can be rewritten as: 
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The same procedure can be applied to each degree of 
freedom so we can consider a generic uncoupled 
equation of motion for the i-degree as: 
 

i i i i i i i i ix x x xα β γ τ δ= + + +            (4) 
 
where the state variable x represents speed. Hence, things 
become easier if we use equation (4) for the identification.  
 

2. IDENTIFICATION METHOD 
 
2.1 Classic method 
 
Equation (4) can be expressed as an equation linear 
in the vector of unknown parameters: 
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where η it’s a binary variable (value 0 or 1) which 
allows to take into account a bias term. Using the 
above equation, the LS estimation technique can be 
applied to estimate the vector of unknowns θ, 
through the application of the following equations: 
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2.2 New method 
 
As it can be easily recognised, the UUV uncoupled 
dynamics, as expressed by Equation (4) is a particular 
case of a more general class of non linear system that 
are linear with respect to the system parameter vector. 
The system dynamics can be expressed by: 
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where nxlR∈φ is a matrix valued function depending 
only on state and control vectors, while lR∈θ  is a 
constant and unknown parameter vector that 
characterises the system dynamics. 
The identification problem consists of estimating the 
unknown parameter vector θ . According to the 
Output Prediction Error method (Ljung, 1987), 
identification of parameter vector θ  is equivalent to 
the minimization of a scalar cost function of the form: 
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The cost function is constituted by a weighted sum of 
squares of prediction errors )( ktε , which are the 
difference between the observed output vectors and 
the one-step prediction of the output )(ˆ kty , i.e.: 
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The positive definite matrices { }N

kktW 1
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− consist of 
weights that should take into account the reliability of 
measurements at each discrete time instant. It is worth 
noting that if the measurement noise vector )( ktε  is zero-
mean then: 

)(ˆ)(ˆ kk txty =                            (13) 
 
where )(ˆ ktx denotes the expected state vector at time 

kt . In order to determine a solution to the 
minimization of the cost function expressed by  
Equation (11), it is necessary that an estimate of one-
step predicted output )(ˆ kty is available. For this 
purpose, let us formally integrate both sides of state 
equation in Equation (10) between two subsequent 
time instants 1−kt  and kt , obtaining: 
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If, taking into account Equation (13), it is assumed 
that 

1 1( ) ( ),k kx t y t− −=  where 
1( )ky t −

 is a properly 
filtered version of the output vector 

1( )ky t −
, i.e. if we 

assign to the unknown state vector a corresponding 
filtered output, then we obtain the following estimate 
for the state vector at time kt  : 
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and thus, we can compute the one-step prediction 
error of Equation (12) in the form: 
 
 1( ) ( ) ( )k k k kt y t y t Fε θ−= − − ⋅   (17) 
 
reordering Equation (17) we get: 
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which is linear in the vector of unknown parameters 
admitting a unique solution that can be obtained 
through Least Squares (LS) algorithm: 
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3. DESCRIPTION OF URIS UUV  

 
URIS robot was developed at the University of Girona 
with the aim of building a small-sized UUV. The hull is 
composed of a stainless steel sphere with a diameter of 
350mm, designed to withstand pressures of 3 atmospheres 
(30 meters depth). Due to the stability of the vehicle in 
pitch and roll, the robot has four degrees of freedom 
(DOF): surge, sway, heave and yaw. Except for the sway 
DOF, the others DOFs can be directly controlled. 
 

   
Fig. 1. (left) URIS in the  tank. (right) URIS reference frame 
 

 
Fig. 2. Water tank used in the identification experiments. 

4. RESULTS 
 
In order to compare both methods, an extensive set of 
experiments was carried out. The trials took place in a 
small water tank (4m. diameter and 1m. depth) (see Fig. 
2). A very accurate navigation system based on 
computer vision (Carreras, 2003) was used for the 
measurements. Due to the reduced dimension in depth, 
only the surge, yaw and pitch DOF’s were identified.   
 
4.1 Identification results for the surge DOF 
 
Five different trials were run for the surge DOF, 4 using 
step signals and 1 using PBRS signals. Three of them 
(steps) where validated and 2 were discarded. In all cases, 
no significant improvement was observed taking into 
account the quadratic damping. For this reason, it was 
considered to be zero. This is usual for very low speed 
robots like the one considered here. Table 1 shows the 
results of the validated experiments using the new 
method as well as their average. Table 2 shows the results 
obtained applying the classic identification method. The 
estimated parameters are shown together with their 
standard deviation and the cost of the whole experiment. 
 

Table 1 Parameter results for surge DOF (New)  
Exp  ααxx γγxx  δδxx JJxx 

θ 0.3243 0.0178 -0.0018 1.6305e-4 
1 

σ 0.0023 0.0001 0.0002  

θ 0.3185 0.0201 0.0041 1.8948e-4 
2 

σ 0.0016 0.0001 0.0001  

θ 0.3237 0.0173 0.0013 1.8918e-4 
3 

σ 0.0016 0.0001 0.0002     

Mean θ 0.3222 0.0184 0.0012 1.8057e-4 

 σ 0.0018 0.0001 0.00016  

 
Table 2 Parameter results for surge DOF (Classical)  

Exp  ααxx γγxx  δδxx JJxx 

θ 0.4147 0.0236 -0.0010 1.8432e-4 
1 

σ 0.0025 0.0001 0.0002  

θ 0.4790 0.0321 -0.0090 2.5973e-4 
2 

σ 0.0022   0.0001   0.0002  

θ 0.5153 0.0295 0.0014 2.4150e-4 
3 

σ 0.0021   0.0001   0.0002     

Mean θ 0.4697 0.0284 -0.0028 2.28517e-4

 σ 0.00227 0.0001 0.0002  

 
Note that physical parameters of the vehicle can be 
easily computed from those shown in table 1 and 2 by 
applying equation (3). Lets us consider in the following 
paragraphs, experiment 2 as a case of study to illustrate 
the procedure. Fig. 3 shows the input signals (force and 
the filtered force, acceleration, speed and position) of 
the experiment. Figure 4 shows the one step prediction 
error of the velocity for both methods. It’s clear that 
better results can be achieved with the new method. The 
statistical validation of the results for the new and 
classic method is reported in the figure 5. Note that the 
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standard deviation of the histogram of the new method 
is smaller than the one of the classic method and that 
better autocorrelation results are observed. The 
performance of the two methods is presented in Fig. 6 
where the measured velocity is compared with the one 
step predicted velocity evaluated in the working point 
of the previous measured velocity (for both methods). 
Finally figure 7 show the long term simulation 
capability of the model with respect to the measured 
values, for surge velocity and position. 
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Fig. 3.  Input signals for surge DOF (experiment 2) 
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Fig. 4.  Comparison of the residuals 
 

 

 
Fig. 5. Statistical validation for surge DOF (New vs. Classic) 
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Fig. 6.  One step speed simulation for surge DOF 
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Fig. 7.  Velocity and position response for surge 
DOF 
 
4.2 Results for the rest of the identified DOF 
 
Next tables and figures show the results obtained for 
the other two identified DOF. First we present the 
results for yaw DOF, where experiment 1 has been 
chosen to compare graphically both methods.  Next, 
the results for pitch DOF are illustrated using 
experiment 1 for comparison. 
 

Table 3 Parameter results for yaw DOF (New) 
Exp  ααψψ γγψψ  δδψψ JJψψ 

θ 1.1865 0.6261 -0.017 5.7759e-4 
1 

σ 0.0031 0.0015 0.0006  

θ 1.3449 0.6178 0.1076 6.9684e-4 
2 

σ 0.0053 0.0024 0.0010  

θ 1.1635 0.4221 -0.255 8.7854e-4 
3 

σ 0.0029 0.0010 0.0011  

θ 1.2326 0.3468 0.1268 0.0020 
4 

σ 0.0053 0.0014 0.0021  

Mean θ 1.2426 0.5173 -0.050 8.38e-04 

 σ 0.00355 0.00145 0.001  

 
 
 
 



     

Table 4 Parameter results for yaw DOF (Old) 
Exp  ααψψ γγψψ  δδψψ JJψψ 

θ 1.3755 0.7564 -0.0964 9.7534e-4 
1 

σ 0.0052 0.0026 0.0010  

θ 1.1785 0.4549 -0.4069  0.0033 
2 

σ 0.0082 0.0021 0.0035  

θ 1.1279 0.4936 0.2892 0.0032 
3 

σ 0.0109 0.0036 0.0041  

θ 1.7541 0.5038 -0.9643 0.0082 
4 

σ 0.0216 0.0058 0.0084  

Mean θ 1.3590 0.5522 -0.2946 0.0039 

 σ 0.0114 0.0035 0.0043  
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Fig. 8.  Comparison of the residuals for yaw DOF 
 

 

 
Fig. 9. Statistical validation for yaw DOF (New vs. 
Classic) 
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Fig. 10.  One step speed simulation for yaw DOF 
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Fig. 11. Velocity and position response for yaw DOF 
 

Table 5  Parameter results for pitch DOF (New) 
Exp  ααθ γγθ JJθ 

θ 0.6486 1.0175 6.4228e-4
1 

σ 0.0013     0.0007  
θ 0.6586 0.8697 4.3642e-4

2 
σ 0.0009 0.0004  
θ 0.6895 1.0735 5.3489e-4

3 
σ 0.0019     0.0011  

Mean θ 0.66395 0.9885 5.5032e-4
 σ 0.0011 0.0006  

 
Table 6  Parameter results for pitch DOF (Old) 

Exp  ααθ γγθ JJθ 

θ 0.5783 1.2121 9.3260e-4
1 

σ 0.0027 0.0017  
θ 0.6122 1.0417 6.7892e-4

2 
σ 0.0039 0.0024  
θ 0.7092 1.4555 9.0143e-4

3 
σ 0.0037 0.0026  

Mean θ 0.6332 1.2364 8.3765e-4
 σ 0.0034 0.0022  
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Fig. 12.  Comparison of the residuals for pitch DOF 
 

0 5 10 15 20
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Measured speed vs One step prediction (New) vs One step prediction (Classic) [rad/s]

Time [s]

Measured speed
One step prediction (New)
One step prediction (Classic)

 
Fig. 13.  One step speed simulation for pitch DOF 
 

 

 
Fig. 14.  Statistical validation for pitch DOF (New vs. Classic) 
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Fig. 15. Velocity and position response for pitch DOF 
 

5 CONCLUSIONS 
 

A comparison between two identification methods for a 
wide class of non linear systems has been presented. The 
both methods, operating off-line, have been applied to the 
identification of URIS UUV on the basis of real data. After 
an extensive set of experimental results, the new method 
has proven to perform better than the classic one. The new 
identified model has proven to be statistically good and 
will be used in the near future for simulation and control. 
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