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Girona, June 2005





To my family and all my friends.



Acknowledgements

In the next lines, I would like express my gratitude to all the people that
has helped me to finish this research project. I give my special thanks to my
family. Thanks to my parents for believing in me, even though they don’t
understand what the hell I am talking about (I hope reading this project will
help, or not). Many thanks to my brother Raul, my best friend. I give my
special thanks to my director Marc, for his good advices and for pushing me
hard to do my best. Don’t stop! The PhD is around the corner! Thanks to
my friend David, always by my side, giving his help when needed, doesn’t
matter the time (one o’clock in the morning and still here! Buf!). I must also
thank my colleagues of laboratory, for all the happy moments that we have
spent together: Palo, Emili, Bet, Marc, Guillem, Eduard, Llúıs, Carles, Ela,
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Chapter 1

Introduction

Our society moves with the speed of sound. A lot of things have changed
since 1917 when the writer Karel Kapek used for the first time the word ro-
bot referring to a machine with humanoid aspect. Even the well known ideas
of Isaak Asimov about robots and his three famous laws of robotics, where
we can see feared men worried for controlling machines against a possible
revolution, seem to be far away from reality. Nowadays, different kinds of
machines are present in our life, helping us in our most common daily activi-
ties. Some scientists understand robotics as an applied science born from the
“marriage” between computer science and tool-machines. A robot should be
able to process and manage information rationally and automatically with-
out human help. However, reality suggests us that we are still very far from
such a technology. Although being trivial for the human intelligence, the
capability of a machine to perceive the environment (sensing) and take a
decision (acting) is a very difficult task for a computer even in very simple
applications. Thus, the field of Artificial Intelligence (AI) has been applied
during the last decades to autonomous robots to solve this problem.

This research project is concerned with the field of autonomous robots and
the problem of action-decision. This project is based on the topics of Rein-
forcement Learning (RL) theory and Direct Policy Search (DPA) Algorithms.
In particular, this work surveys the field of Policy Gradient Algorithms as
a way to solve a RL problem (RLP). Throughout this chapter the main as-
pects which have conditioned this research project will be overviewed. First,
the research antecedents will be presented in the beginning of this research
project. Then, the goal of the thesis will be pointed out. Finally, the chapter
will finish with the outline of this dissertation.

1
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1.1 Previous Research Work

This work has been fulfilled in the Computer Vision and Robotics, VICOROB
research group of the University of Girona, Spain. This group has been doing
research in underwater robotics since 1992 (supported by several programs
of the Spanish commission MCYT). The main contribution throughout the
past years is the development of two Unmanned Underwater Vehicles (UUV).
The first prototype, called GARBI, was developed in collaboration with the
Polytechnical University of Catalonia. This vehicle was first conceived as a
Remotely Operated Vehicle (ROV), but at the moment it is being modified
to convert it into an Autonomous Underwater Vehicle (AUV), adapting it to
new requirements. The second prototype, URIS, was fully developed in the
University of Girona and was designed as an Autonomous Underwater Vehicle
(AUV). Smaller and cheaper than its older brother, was constructed with the
objective of having a quick experimental benchmark for testing sensors and
software for future implementation on GARBI.

The design of an autonomous vehicle requires a solution for the action
decision problem. A Control Architecture is the part of the robot control
system in charge of making these decisions. The control architecture used
in URIS uses a set of behaviors to propose the best movement at any given
moment. Each behavior has a particular goal (“go to”, “avoid wall”,...) and
contains a mapping between the state of the environment and the action set
to accomplish this goal. Previous research work consisted on investigating
some implementation aspects of the behavior-based architecture in order to
improve the performance of the control system.

In this way, the use of learning algorithms to improve the efficiency of
the behaviors was explored. A learning theory, Reinforcement Learning, was
overviewed. The development a RL based algorithm able to achieve simple
tasks and exhibit real-time learning capabilities led to the PhD. thesis of Dr.
Marc Carreras [Carreras, 2003]. The proposed RL method was called Semi-
Online Neural Q-Learning (SONQL) and it is based on a value function.

The research project presented in this document is a continuation of the
work started with the RL-based behaviors. This work surveys an special issue
in RL called direct policy search methods and its application to robotics, with
special attention to those algorithms able to work on-line. Also, this research
project studies successful applications of policy search methods in real robot
systems over the past few years.
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1.2 Goal of this Research Project

After the description of the research antecedents, the goal of this research
work can be stated. The general purpose is summarized as:

”The study of policy gradient algorithms as an alternative ap-
proach to value based algorithms and its suitability to robotics”

The work proposed continues the research line started with the develop-
ment of the SONQL algorithm for on-line robot learning. On one hand, it
overviews the main aspects of reinforcement learning and analyzes the main
features of value and policy algorithms as alternatives approaches to solve
RLP in robotics. On the other hand, surveys the most important policy gra-
dient algorithms, successful applications in robotics and, finally, shows some
implementation details with two simulated experiments. To study the suit-
ability of direct policy search algorithms for on-line robot learning is certainly
the most important purpose of this dissertation.

The general goal of the research project can be divided into three more
specific points:

Reinforcement Learning. This part is a general overview of RL, its main
features and its field of application. Value Function algorithms are
first presented as a common methodology used to solve RLP. However,
recent studies show the possibility of achieving better results apply-
ing direct policy search methodologies instead of value based, specially
when our robot has to fulfill a task in unknown environment. Thus, this
part’s objective is to focus on the topic of policy gradient algorithms.

Policy Gradient Methods. A survey among several policy gradient meth-
ods has been presented and studied in this central part of the project.
Moreover, the most relevant successful applications of this method-
ologies to solve real robot problems using RL are commented. The
objective of this part is the comprehension of these algorithms.

Experimental Results. One of the algorithms studied in the previous part
is selected to carry out simulated experiments. The chosen method is
simple and it allows a deep understanding of policy gradient algorithms.
The approach was implemented for two different RL problems. Results
and conclusions are extracted from these experiments.

1.3 Outline of the Project

The contents of this work can be divided into three parts. The first part
overviews the field of Reinforcement Learning and details a comparison be-
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tween value based methods and direct policy search algorithms (Chapter 2).
In the second part, several policy search algorithms are analyzed (Chapter 3)
and successful robotics applications of these methods are commented (Chap-
ter 4). The third part proposes a neural policy gradient algorithm for its
application to robotics (Chapter 5) and shows the obtained experimental re-
sults (Chapter 6). Finally, the research project is concluded and the future
work, that will be followed to continue the PhD thesis, presented (Chapter 7).
A brief description of each chapter is next presented.

Chapter 2 Reinforcement Learning. This chapter presents the theory of Re-
inforcement Learning. Two different RL methodologies are discussed:
value function algorithms and direct policy search methods. The suit-
ability of policy gradient methods in robotics is pointed out in this
chapter.

Chapter 3 Policy Gradient Methods. This chapter analyzes and classifies
various gradient algorithms. The objective of this chapter is to empha-
size the main ideas of each methodology, its weaknesses and its strong
points.

Chapter 4 Policy Gradient Methods in Robotics. This chapter presents re-
cent successful applications in robotics using the theoretic algorithms
described in previous chapter.

Chapter 5 Neural Policy Gradient Algorithm (NPGA). In order to carry
out the experiments, one of the studied algorithms was implemented.
The algorithm uses a neural network as a function approximator.

Chapter 6 Experimental Results. The NPGA was applied in two different
RL problems. First, an underwater robot having to navigate in a sim-
ulated 2D environment. Secondly, the NPGA performance is tested in
the “mountain-car task” benchmark and the results are compared with
the ones obtained with Q-learning.

Chapter 7 Conclusions and Future Work. This chapter concludes the re-
search project by summarizing the work and pointing out the thesis
proposal.



Chapter 2

Reinforcement Learning

A commonly used methodology in robot learning is Reinforcement Learning
(RL). In RL, an agent tries to maximize a scalar evaluation (reward or pun-
ishment) obtained as a result of its interaction with the environment. This
chapter overviews the field of RL. Once the main aspects are described, we
compare different RL based algorithms and, to solve the RL problem, two
methodologies are presented: Value Function algorithms and Policy Gradi-
ent methods. This chapter describes the principal advantages and defects
when working on-line and off-line. Finally, some conclusions are presented,
among which, Policy Gradient Algorithms (PGA) are shown to be suitable
for our robot applications. This chapter represents only a general overview
of RL theory. For a deeper understanding of this field, refer to the book
”Reinforcement Learning. An Introduction” [Sutton and Barto, 1998].

2.1 The Reinforcement Learning Problem

The goal of an RL system is to find an optimal policy to map the state of the
environment to an action which in turn will maximize the accumulated future
rewards. Most RL techniques are based on Finite Markov Decision Processes
(FMDP) causing finite state and action spaces. The main advantage of RL
is that it does not use knowledge database, as does supervised learning when
it uses a set of examples which show the desired input/output, so the learner
is not told what to do, but instead must discover actions which yield the
most reward. Therefore, this class of learning is suitable for online robot
learning. The agent interacts with a new, undiscovered environment selecting
the actions computed as the best for each state, receiving a numerical reward
for every decision. These rewards will be “rich” for good actions and “poor”
for bad actions. The rewards are used to teach the agent and in the end the

5
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robot learns which action it must take at each state, achieving an optimal or
sub-optimal policy (state-action mapping).

We find different elements when working with RL algorithms. The first is
the agent or learner which interacts with the environment. The environment
includes everything that is outside the learner. If we describe the interaction
process step by step, the learner first observes the state of the environment
and, as a result, the agent generates an action and the environment responds
to it with a new state and a reward. The reward is a scalar value generated
by a reinforcement function which evaluates the action taken related to the
current state. The learner-environment relationship can be seen in Figure 2.1.
Observing the diagram, the interaction sequence can be described: for each
iteration step t, the learner observes the state st and receives a reward rt.
According to these inputs and the RL policy followed at that moment, the
learner generates an action at. Consequently, the environment reacts to this
action changing to a new state st+1 and giving a new reward rt+1. A sequence
of states, actions and reward is shown in Figure 2.2. The most important
features of the learner and environment are listed as follows:

Learner :

• Performs the learning and decides the actions.

• Input: the state st and reward rt (numerical value).

• Output: an action at.

• Goal: to maximize the amount of rewards
∑∞

i=t+1 ri.

Environment :

• Everything outside the learner.

• Reacts to actions with a new state.

• Contains the Reinforcement Function which generates the rewards.

As stated before, the learner interacts with the environment in order to
find correct actions. The action applied depends on the current state, so
at the end of the learning process, the agent has a mapping function which
relates every state with the best action taken. To get the best actions at every
state, two common processes in RL are used: exploitation and exploration.
Exploitation means that the learner always selects what is thought to be the
best action at every current state, but, sometimes exploration is required to
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Learner
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Figure 2.1: Diagram of the interaction Learner vs. Environment.t. . . st a rt+1 st +1 t +1a rt +2 st +2 t +2a rt +3 st +3 . . .t +3a
Figure 2.2: Schematic sequence of states, actions and rewards.

investigate the effectiveness of actions that have not been tried by the current
state.

Once the learning period is through, the agent does not select the action
that maximizes the immediate reward but the one that maximizes the sum
of future rewards. In other words, an action can be the best one to solve the
RLP, but high rewards will not come until after some iterations.

If we take a deeper look, beyond the environment and the agent, four
main subelements of a reinforcement learning system can be identified: a
policy function, a reinforcement function, a value function and a model of
the environment. These functions define the RLP.

Policy Function. This defines the action to be taken by the agent at a par-
ticular state. The policy function represents a mapping between states
and actions. In general, policies may be stochastic and are usually
represented with the π(s, a) function, where the probability of choos-
ing action a from state s is contained. The policy that gets maximum
accumulated rewards is called optimal policy and is represented as π∗.

Reinforcement Function. This defines the goal in a reinforcement learn-
ing problem. It is located in the environment and, roughly speaking,
maps each perceived state of the environment to a single number called
a reward. The main objective of an RL learner is to maximize the total
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reward it receives in the long run. The reinforcement function gives
an immediate evaluation to the learner, but high immediate rewards
are not the objective of an RL learner but the total amount of rewards
perceived at the end.

Value Function. As stated before, the reinforcement function indicates
what is considered “good” in an immediate sense. The value function
defines what will be good in the long run starting from a particular
state. In other words, the value of a state is the total amount of esti-
mated reward that the learner is going to receive, following a particular
policy, starting from the current state. There are two kinds of value
functions. The first is State-Value function V π(s), which contains the
sum of expected rewards starting from state s and following a particu-
lar policy π. The second is the Action-Value function Qπ(s, a), which
contains the sum of rewards in the long run starting in state s, taking
action a and then following policy π. The action-value function Qπ(s, a)
will be equal to the state-value function V π(s) for all actions considered
greedy with respect to π. Once the learner reaches the optimal value
functions, we can obtain the optimal policy.

Model of the environment. Also known as dynamics function. It de-
scribes the behavior of the environment and, given a state and an
action, the model of the environment generates the next state and the
next reward. This function is usually stochastic and unknown, but the
state transitions caused by the dynamics are contained in some way in
the value functions.

Most part of RL algorithms use these functions to solve the RLP. If we
look deeper into algorithms that use a value function we notice that once the
learning process is performed, the algorithm proposes a learning update rule
to modify the value function, and then proposes a policy to be followed by
the learner. If the RL algorithm converges after some iterations, the value
function changes to the optimal value function from which the optimal policy
can be extracted. The solution of the RLP is accomplished by following
the state-action mapping contained in the optimal policy π∗. Figure 2.3
represents a phase diagram which is usually followed in RL algorithms based
on the value function procedure.

The studies presented in this research project point out that other kinds
of algorithms, in which attention has been growing recently, are able to solve
the RLP without a value function. Policy methods or Direct policy search
methods do not perform the learning process over value functions but over
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Figure 2.3: Typical phase diagram of a value function based RL algorithm,
where the value function is updated according to the algorithm. Once the
optimal value function is found, the optimal state-action policy is extracted.
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the policy itself. These algorithms propose a learning update rule to di-
rectly modify the policy parameters. As will be seen in the following lines,
these kinds of algorithms have advantages and disadvantages respecting value
methods. Figure 2.4 represents the phase-diagram of policy based algorithms.

2.2 Finite Markov Decision Processes in RL

As mentioned before, in reinforcement learning the agent makes its decision
according to the environment’s information. This information is presented
as the environment’s state and reward. If the information contained in the
state is sufficient for the agent to solve the RLP, it means that the state
summarizes all relevant information. In this case the state will be called
complete and the process is said to have accomplished the Markov Property.
An environment which accomplishes the Markov property contains in its
state all relevant information to predict the next state. Completeness entails
that knowledge of past states, measurements or controls carry no additional
information to help us predict the future more accurately. At the same time,
future rewards do not depend on past states and actions. In Equation 2.1 we
define the conditional probability of achieving next state st+1 and obtaining
reward rt+1, when taking action at and knowing previous states and actions,

Pr{st+1 = s′, rt+1 = r′|st, at, rt, st−1, at−1, ..., s0, a0} (2.1)

If an environment has the Markov property, the environment’s new state
and reward, st+1 and rt+1, will depend only on the state/action representa-
tion at time t. This statement can be defined mathematically as follows:

Pr{st+1 = s′, rt+1 = r′|st, at} (2.2)

The environment and the whole process is considered to be a Markov Decision
Process (MDP) if, and only if, Equation 2.1 is equal to Equation 2.2 for all
states and actions. Moreover, if the state and action spaces are finite, the
environment is considered a Finite MDP (FMDP). Therefore, for a particular
finite Markov decision processes with finite states and actions, the stochastic
dynamics of the environment can be expressed by a transition probability
function P a

ss′ . This function represents the probability of reaching state s′

from state s if action a is taken. Equation 2.3 defines this function.
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Figure 2.4: Diagram of a direct policy based RL algorithm. The policy
parameters are updated according to the algorithm. Once the optimal policy
parameters are found, the learning process finishes.
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P a
ss′ = Pr{st+1 = s′|st = s, at = a} (2.3)

In the same way, the expected value of the next reward Ra
ss′ can be obtained.

Given any current state s and action a, together with any state s′, we have:

Ra
ss′ = E{rt+1|st = s, at = a, st+1 = s′} (2.4)

Both P a
ss′ and Ra

ss′ represent the most important concepts for defining the
dynamics of a FMDP. One of the learner’s functions, the value function, is
highly related to this dynamic. For a particular learner policy π, the value
function (V π or Qπ) can be expressed in terms of P a

ss′ and Ra
ss′ and, as will

be shown, the optimal value function (V ∗ or Q∗) can also be determined.
Once this function is obtained, the optimal policy π∗ can be extracted from
it. Before reaching these expressions, a new function has to be defined.

As has been stated, the goal of RL is to maximize the sum of future
rewards. A new function Rt is used in the FMDP framework to express this
sum, as Equation 2.5 shows. This sum finishes at time T , when the task that
RL is trying to solve finishes. The tasks, having a finite number of steps, are
called episodic tasks. However, RL is also suitable for solving tasks which do
not finish at a certain number of time steps. For example, in a robotics task,
the learner may be continually activated. In this case, the tasks are called
continuing tasks and can run to infinite. To avoid an infinite sum of rewards,
the goal of RL is reformulated to the maximization of the discounted sum of
future rewards. The future rewards are corrected by a discount factor γ as
expressed in Equation 2.6.

Rt = rt+1 + rt+2 + rt+3 + ... + rT (2.5)

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑

k=0

γkrt+k+1 (2.6)

Setting the discount factor between 0 ≤ γ ≤ 1, the infinite sum of rewards
does not achieve infinite values and, therefore, the RLP can be solved. In
addition, the discount factor allows the selection of the number of future
rewards to be maximized. For γ = 0 only the immediate reward is maximized.
For γ = 1 the maximization will take into account the infinite sum of rewards.
Finally, for 0 < γ < 1 only a reduced set of future rewards will be maximized.

The two value functions, V π and Qπ, can be expressed in terms of the ex-
pected future reward Rt. In the case of the state-value function, the value of
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a state s under a policy π, denoted V π(s), is the expected discounted sum of
rewards when starting in s and following π thereafter. For the action-value
function, the value of taking action a in state s under policy π, denoted
Qπ(s, a), is the expected discounted sum of rewards when starting in s, ap-
plying action a and following π thereafter. Equations 2.7 and 2.8 formally
define these two functions.

V π(s) = Eπ{Rt|st = s} = Eπ

{ ∞∑

k=0

γkrt+k+1|st = s

}
(2.7)

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{ ∞∑

k=0

γkrt+k+1|st = s, at = a

}
(2.8)

The last two equations define the value functions obtained when follow-
ing a particular policy π. To solve the RLP, the optimal policy π∗ which
maximizes the discounted sum of future rewards has to be found. As the
value functions indicate the expected sum of future rewards for each state
or state/action pair, an optimal value function will contain the maximum
values. Therefore, from all the policies π, the one having a value function
(V π or Qπ) with maximum values in all the states or state/action pairs will
be an optimal policy π∗. It is possible to have several policies (π∗1, π

∗
2, ...)

which fulfill this requirement, but only one optimal value function can be
found (V ∗ or Q∗). Equations 2.9 and 2.10 reflect this statement.

V ∗(s) = max
π

V π(s) (2.9)

Q∗(s, a) = max
π

Qπ(s, a) (2.10)

In order to find these optimal value functions, the Bellman equation
[Bellman, 1957] is applied. This equation relates the value of a particular
state or state/action pair with the value of the next state or state/action
pair. To relate the two environment states, the dynamics of the FMDP (P a

ss′

and Ra
ss′) is used. The Bellman optimality equations for the state and action

value functions are found in Equations 2.11 and 2.12.

V ∗(s) = max
a

∑

s′
P a

ss′ [R
a
ss′ + γV ∗(s′)] (2.11)

Q∗(s, a) =
∑

s′
P a

ss′ [R
a
ss′ + γ max

a′
Q∗(s′, a′)] (2.12)

The Bellman optimality equations offer a solution to the RLP by finding
the optimal value functions V ∗ and Q∗. If the dynamics of the environment
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is known, a system of equations with N equations and N unknowns can be
written using Equation 2.11, being N the number of states. This nonlinear
system can be solved resulting in the V ∗ function. Similarly, the Q∗ function
can be found.

Once V ∗ is known, the optimal policy can be easily extracted. For each
state s, any action a which causes the environment to achieve a state s′

with maximum state value with respect to the other achievable states can
be considered as an optimal action. The set of all the states with their cor-
responding optimal actions constitutes an optimal policy π∗. It is important
to note that to find each optimal action, it is only necessary to compare the
state value of the next achievable states. This is due to the fact that the
state-value function V ∗ already contains the expected discounted sum of re-
wards for these states. In the case where the Q∗ is known, the extraction of
the optimal policy π∗ is even easier. For each state s, the optimal action will
be the action a, which has a maximum Q∗(s, a) value, see Equation 2.13.

π∗(s) = arg max
a∈A(s)

Q∗(s, a) (2.13)

This section has formulated the Reinforcement Learning problem using
Finite Markov Decision Processes. It has also pointed out how to find the
solution of the RLP when the dynamics of the environment is known.

Markovian environments have been a platform for various RL algorithms,
like Sutton’s temporal difference TD(λ) algorithm [Sutton, 1988] or Watkin’s
Q-learning(QL) method [Watkins, 1989]. The aim of dynamic program-
ming(DP) and theory of stochastic approximation allowed these algorithms
to be analyzed [Dayan, 1992], [Tsitsiklis, 1994], [Jaakkola et al., 1994] and
[Watkins and Dayan, 1992]. Considering a Markovian environment is a risky
assumption. The non-Markov nature of an environment can manifest itself in
many ways, and the algorithm can fail to converge if the environment does
not accomplish all its properties [Singh et al., 1994]. Following this path,
the most direct extension of MDP that blinds part of the state to the learner
is known as Hidden Markov Models(HMM). The underlying environment
continues to be Markovian, but the information extracted does not seem
Markovian to the learner. The analogy of HMM for control problems are the
Partially Observable Markov Decision Processes(POMDP) [Monahan, 1982].
The algorithms presented in this research project are based on POMDP be-
cause, in practice, it is impossible to get a complete state for any realistic
robot system.
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2.3 Value Function Methods vs Policy Search

algorithms

The dominant approach over the last decade has been to apply reinforce-
ment learning using the value function approach. As a result, many RL-
based control systems have been applied to robotics over the past decade.
In [Smart and Kaelbling, 2000], an instance-based learning algorithm was
applied to a real robot in a corridor-following task. For the same task, in
[Hernandez and Mahadevan, 2000] a hierarchical memory-based RL was pro-
posed, obtaining good results as well. [Carreras et al., 2003] presented an
underwater robot that learnt different behaviors using a modified Q-learning
algorithm. Although value function methodologies have worked well in many
applications, they have several limitations. The considerable amount of com-
putational requirements that increase time consumption and the lack of gen-
eralization among continuous variables represent the two main disadvantages
of ”value” RL algorithms.

Reinforcement Learning is usually formulated using Finite Markov Deci-
sion Processes (FMDP). This formulation implies a discrete representation
of the state and action spaces. However, in some tasks the states and/or
the actions are continuous variables. A first solution can be to maintain
the same RL algorithms and discretize the continuous variables. If a coarse
discretization is applied, the number of states and actions will not be too
high and the algorithms will be able to learn. However, in many applications
the discretization must be fine in order to assure a good performance. In
these cases, the number of states will grow exponentially, making the use
of RL impractical. The reason is the high number of iterations necessary
to update all the states or state/action pairs until an optimal policy is ob-
tained. This problem is known as the curse of dimensionality. In order to
solve this problem, most RL applications require the use of generalizing func-
tion approximators such as artificial neural-networks (ANNs), instance-based
methods or decision-trees. In some cases, Q-learning can fail to converge to a
stable policy in the presence of function approximation, even for MDPs and it
may be difficult to calculate maxa∈A(s)Q

∗(s, a) when dealing with continuous
space-states [Murphy, 2000].

Another feature of value function methods is that such approaches are
oriented to finding deterministic policies. However, stochastic policies can
yield considerably higher expected rewards than deterministic ones as in the
case of POMDPs, selecting among different actions with specific probabili-
ties [Singh et al., 1994]. Furthermore, some problems may appear when the
state-space is not completely observable (POMDP), small changes in the es-
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timated value of an action may or may not cause it to be selected; reslting
in convergence problems [Bertsekas and Tsitsiklis, 1996].

Over the past few years, studies have shown that approximating a pol-
icy directly can be easier than working with value functions, and better
results can be obtained [Sutton et al., 2000][Anderson, 2000]. Informally,
it is intuitively simpler to determine how to act instead of value of act-
ing [Aberdeen, 2003]. So, rather than approximating a value function, new
methodologies approximate a policy using an independent function approx-
imator with its own parameters, trying to maximize the future expected
reward. Furthermore, scientists have developed different kinds of policy
search algorithms obtaining good results. This survey cites the methods pre-
sented in [Sondik, 1978], [Bertsekas and Tsitsiklis, 1996], [Hansen, 1998] and
[Meuleau et al., 1999]. Meuleau’s work also proposed how gradient methods
can be used to search in the space of stochastic policies. These particular
kind of algorithms are the focus of our research project.

Policy gradient algorithms can be used to represent the policy. For ex-
ample, an ANN whose weights are the policy parameters. The state would
be the input of the network and as output we would have a distribution
probability function for action selection. In Equation 2.14 we can see that
if θ represents the vector of the policy parameters and ρ the performance of
the policy (e.g., reward received), then the policy parameters are updated
approximately proportional to the gradient [Sutton et al., 2000]:

∆θ ≈ α
δρ

δθ
(2.14)

where α is a positive step size. In comparison with the value function ap-
proach, small changes in θ can cause only small changes in the policy.

The advantages of policy gradient methods against value-function based
methods are various. The main advantage is that using a function approx-
imator to represent the policy directly solves the generalization problem.
Besides, a problem for which the policy is easier to represent should be
solved using policy algorithms [Anderson, 2000]. Working this way should
represent a decrease in the computational complexity and, for learning sys-
tems which operate in the physical world, the reduction in time consump-
tion would be enormous. Furthermore, learning systems should be designed
to explicitly account for the resulting violations of the Markov property.
Studies have shown that stochastic policy-only methods can obtain better
results when working in POMDP than those obtained with deterministic
value-function methods [Singh et al., 1994]. In [Anderson, 2000] a compari-
son between a policy-only algorithm [Baxter and Bartlett, 2000] and a value
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Q-learning method [Watkins and Dayan, 1992] is presented; both algorithms
use a simple neural network as function approximator. A 13-state Markovian
decision process is simulated for which the Q-learning oscillates between the
optimal and a suboptimal policy while the policy-only method converges to
the optimal policy.

On the other hand, as disadvantage, policy gradient methods learn much
more slower than RL algorithms using a value function [Sutton et al., 2000],
they use to find local optima of the expected reward [Meuleau et al., 2001]
and the gradient estimators used in these algorithms may have a large vari-
ance [Marbach and Tsitsiklis, 2000][Konda and Tsitsiklis, 2003].

The first example of an algorithm optimizing the averaged reward ob-
tained for stochastic policies working with gradient direction estimates was
Williams’s REINFORCE algorithm [Williams, 1992]. This algorithm learns
much more slower than other RL algorithms which work with a value func-
tion and, maybe for this reason, has received little attention. However, the
ideas and mathematical concepts presented in REINFORCE were a basic
platform for later algorithms.

A few years later, in [Kimura et al., 1997], Williams’s algorithm was ex-
tended to the infinite horizon setting. Kimura’s method is, as is REIN-
FORCE, based on stochastic gradient ascent (SGA). The authors compared
its algorithm with Jaakola’s method [Jaakkola et al., 1995] and Watkin’s Q-
learning algorithm [Watkins and Dayan, 1992] in a robot control problem
achieving good results.

The Baxter and Bartlett approach [Baxter and Bartlett, 1999] is the one
selected in this research project to carry out the experiments. Its method
calculates a parameterized policy that converges to an optimal by comput-
ing approximations of the gradient of the averaged reward from a single
path of a controlled POMDP. The convergence of the method is proven with
probability 1, and one of the most attractive features is that it can be im-
plemented on-line. Baxter and Bartlett’s approach is based on the fact that,
given a state s, it searches for a policy that minimizes the expected re-
ward. Moreover, in [Marbach and Tsitsiklis, 1998] and [Marbach, 1998] an
algorithm similar to Baxter and Bartlett’s approach was described and its
convergence demonstrated. The algorithm is only suitable for finite MDP
and can be implemented to work on-line.

Learning a value function and using it to reduce the variance of the gra-
dient estimate appears to be essential for rapid learning. In order to im-
prove learning speed, some “hybrid” approaches combine value function es-
timates with gradient estimation. Among these, this survey wishes to point
out [Jaakkola et al., 1995] and more recently [Baird and Moore, 1999] and
[Sutton et al., 2000]. In Jaakkola’s method, the algorithm involves a Monte-
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Carlo policy evaluation combined with a policy improvement algorithm; re-
sults guaranteed the convergence to local maximum. On the other hand,
Baird and Moore presented a methodology that allows policy-search and
value-based algorithms to be combined, unifying these two approaches into
what they named Single Value and Policy Search (VAPS) algorithm. Sutton’s
method proposed a policy iteration algorithm with a general differentiable
function approximator. Results demonstrate converge to local optima.

Other studies in this survey are certain variants of actor-critic algorithms
or policy iteration architectures that obtained good results as well. The
studies presented in [Kimura and Kobayashi, 1998] and, more recently, the
work in [Konda and Tsitsiklis, 2003] can be considered a reference in this
field.

As can be appreciated, this research project has a special interest in those
model-free algorithms designed to perform practical tasks in unknown envi-
ronments and on-line. However, some model-based approaches have also
obtained good results by first learning the policy on a simulated model and,
once the policy is considered learned, using it on the real agent. Among these
methods, the PEGASUS algorithm [Ng and Jordan, 2000] obtained good re-
sults by simulating a “transformed” POMDP with deterministic transitions.
The obtained results showed a considerable reduction of the variance. An im-
portant trade off is that it can introduce false local maxima [Aberdeen, 2003].

Close to the root of these theoretical variants of policy search methods,
only a few but promising practical applications of these algorithms have ap-
peared. Chronologically, this research project emphasizes the work presented
in [Bagnell and Schneider, 2001], where an autonomous helicopter learns to
fly using an off-line model-based policy search method. Also important is the
work presented in [Rosenstein and Barto, 2001] where a simple “biologically
motivated” policy gradient method is used to teach a robot in a weightlift-
ing task. More recent is the work done by [Kohl and Stone, 2004] where
a simplified policy gradient algorithm is implemented to optimize the gait
of Sony’s AIBO quadrupedal robot. Finally, in [Tedrake et al., 2004] and
[Matsubara et al., 2005], a biped robot is trained to walk by means of a “hy-
brid” RL algorithm that combines policy search with value function methods.

All these methodologies and their practical applications in robotic sys-
tems will be detailed in the next two chapters.



Chapter 3

Policy Gradient Methods

This chapter introduces several policy-gradient methods for agent training
algorithms. The survey presented here details the most important method-
ologies from over the last few years. These approaches have been classified
into two main currents: methods which are strictly based on the gradient of
the averaged reward (here considered as pure policy gradient algorithms) and
those which, besides the gradient estimates, have the assistance of a value
function (considered hybrid policy-valued algorithms). Algorithms stated
here constitute the basic foundation of most successful practical applications
which solve the RLP with direct policy search.

3.1 “Pure” policy gradient algorithms

The easy structure of these algorithms, without any computational complex-
ity, and their capability of mildly adapting to non-Markov environments,
make pure policy gradient methods the most suitable for real robot applica-
tions in unknown environments. The best representatives are enumerated in
the following.

3.1.1 Williams’ REINFORCE

As mentioned in the previous chapter, Williams’ algorithm is a reference in
policy search methods and its principles are an essential support for most
RL policy gradient-based methods. The REINFORCE algorithm operates
by adjusting weights in a direction that lies along the gradient of expected
reinforcement (delayed or immediate) rewards. Let’s consider a neural net-
work (ANN) dealing with an immediate-reinforcement learning task. The
weights of this network are updated following the expression:

19
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∆wij = αij(r − bij)eij (3.1)

where αij is a learning rate factor, bij is a reinforcement baseline and eij =
δ ln gi

δwij
represents the eligibility of wij. gi represents the probability mass func-

tion which determines the value at the output of the ANN as a function of the
network weights and its input. Considering the special case of a stochastic
network with its neurons of the logistic type, the eligibility for each weight
wij can be computed, following the chain rule, as stated in Equation 3.2;

eij =
δ ln gi

δwij

=
yi − pi

pi(1− pi)
f ′i(si)xj = (yi − pi)xj (3.2)

where yi represents the output of the ith unit in the network, pi is the proba-
bility of this output when the total input is si, f ′(si) is the derivative of that
neuron’s activation function and finally xj is the jth input to the neuron,
either provided by another neuron of the preceding layer or directly as a part
of the state of the environment. Furthermore, the REINFORCE algorithm
has the form:

∆wij = αij(r − bij)(yi − pi)xj (3.3)

Williams’ algorithm examples set the reinforcement baseline bij to 0, but its
algorithm is also consistent with delayed rewards setting the baseline to a
term r̄ that acts as an adaptive estimate of past experience:

r̄(t) = γr(t− 1) + (1− γ)r̄(t− 1) (3.4)

where 0 < γ < 1. Subsequently, the expression that gives us the update rule
for every parameter of our network is formulated in Equation 3.5;

wij(t + 1) = wij(t) + αij(r(t)− r̄(t))(yi(t)− pi(t))xj(t) (3.5)

For more information on this work refer to [Williams, 1992].

3.1.2 Kimura’s extension

Williams’ REINFORCE is unbiased. Hajime Kimura and coauthors extended
Williams’ algorithm to the infinite horizon by adding a discount factor γ
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into the calculation of the eligibility as seen in Equation 3.7. This term
considerably improves the performance of the algorithm but, as drawback,
our gradient estimates will be biased:

ei(t) =
δ ln gi

δwi

(3.6)

Di(t) = ei(t) + γDi(t− 1) (3.7)

where 0 < γ < 1. Williams’ eligibility ei(t) contains information about
immediate executed actions. Di(t) acts as a discounted running average of
the eligibility. Moreover, as we move the discount factor γ closer to 1, we
increase the memory of the agent concerning past actions. This new term is
called eligibility trace [Singh and Sutton, 1996] and accumulates the agent’s
history on executed actions. Kimura’s update weight procedure is computed
as:

wi(t + 1) = wi(t) + α(1− γ)(r(t)− b)Di(t) (3.8)

where αij is a learning rate factor, γ represents a discount factor, bij is a
reinforcement baseline and Di(t) concerns the eligibility trace. For more
information on this work refer to [Kimura et al., 1997].

3.1.3 Baxter and Bartlett’s approach

The algorithm proposed by Baxter and Bartlett is considered, like Kimura’s,
an extension of Williams’ REINFORCE and very similar to other recent con-
temporary methodologies such as the one in [Marbach and Tsitsiklis, 1998]
or [Marbach, 1998]. The main difference with the algorithm proposed by
Kimura is that this method does not use a reward baseline. Also, differing
from Marbach’s, this algorithm is suitable for use in POMDP, as it does not
need the knowledge of the transition probability function P a

ss′ , and only needs
to know a randomized policy µ.

θ ∈ RK represents the parameter vector of an approximate function that
maps a stochastic policy. Let η(θ) be the averaged reward of the POMDP
with the parameter vector θ. The gradient function computes approxima-
tions ∇ηβ(θ) to ∇η(θ) based on a continuous sample path of the Markov
chain of the parameterized POMDP. One of the alternative approaches con-
sidered by Baxter and Bartlett’s algorithm is the possibility of being im-
plemented on-line by adjusting the parameter vector at every iteration of
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the partially-Markovian environment. The accuracy of the approximation is
controlled by the discount factor β ∈ [0, 1) which increases or decreases the
agent’s memory of past actions as in Kimura’a algorithm. It was proven in
[Baxter and Bartlett, 2000] that

∇η(θ) = lim
β→1

∇βη(θ) (3.9)

As we increase the value of β, the memory of the agent increases, however
the trade-off is that the variance of the estimates ∇ηβ(θ) also rises with this
parameter.

Furthermore, given a POMDP with the magnitudes of its rewards uni-
formly bounded for all possible states, an initial parameter values θ0 ∈ RK

and a randomized differentiable and uniformly bounded policy µ(θ, ∗) for
all observed states and actions, the vector of parameter that represents the
current policy can be updated following the expressions below. In Equa-
tion 3.10, the eligibility trace for each parameter is calculated according to
the gradient approximation.

zt+1 = βzt +
∇µut(θ, yt)

µut(θ, yt)
(3.10)

zt relates the eligibility trace, β is a discount factor, yt is the observed state
and ut the generated control action for each time step t. In Equation 3.11
the update parameter procedure is completed,

θt+1 = θt + αtr(it+1)zt+1 (3.11)

where θt represents the parameter vector, αt is the learning rate and r(it+1)
as the immediate reward perceived. This algorithm requires 2K parameters
to be stored, where K is the length of the parameter vector θ. For more
information on this work refer to [Baxter and Bartlett, 1999].

3.1.4 Marbach’s algorithm

The considerations taken in Marbach’s methodology make its algorithm more
complex mathematically than other pure policy gradient methods presented
before. This algorithm is designed for Markov reward processes and needs to
know the environment’s transition probability function P a

ss′ . These require-
ments make this method unsuitable for robotic applications in real environ-
ments, but the mathematical concepts introduced in this work are a reference
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in this field. The proposed on-line algorithm updates 2K + 1 numbers every
iteration step. As with other algorithms, it stores the vector of the policy
parameters θ and a Z vector similar to Kimura’s eligibility trace. Also, it
computes and stores an estimate λ̃ of the average reward under the current
value of θ. Authors assure us that, as θ keeps changing, λ is not an accurate
estimate of the averaged reward but a biased estimation.

At any time state k, being the current state ik, gi(θ) is the one stage
reward depending on θ, and the values of θk, Zk and λ̃k are available from
the previous iteration, the update of θ and λ̃ is computed as follows:

θk+1 = θk + αk(∇gik(θk) + (gik(θk)− λ̃k)zk) (3.12)

λ̃k+1 = λ̃k + ηαk(gik(θk)− λ̃k) (3.13)

The updated policy parameters allow us to make a transition to next state
ik+1 according to the transition probabilities pij(θk+1), so the computation
of the vector traces can be obtained as stated in Equation 3.14.

zk+1 =

{
0, ifik+1 = i∗

zk + Likik+1
(θk+1), otherwise

}
(3.14)

where Likik+1
(θk+1) can be interpreted as a likelihood ratio derivative term

[L’Ecuyer, 1990] related to the space of transition probabilities and defined
as:

Likik+1
(θk+1) =

∇pikik+1
(θk+1)

pikik+1
(θk+1)

(3.15)

pikik+1
represents the transition probability of, once being in state ik, going

to state ik+1 under current policy θk+1. For more information on this work
refer to [Marbach and Tsitsiklis, 1998].

3.2 “Hybrid” policy-valued algorithms

High variances of policy gradient methods slow down the convergence speed
of this algorithms. On the other hand, value methods maintain low variances
but they do not guarantee convergence when dealing with POMDPs. The
idea of hybrid algorithms is to combine the advantages of both methods, thus
obtaining a fast algorithm able to converge in semi-Markov environments.
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3.2.1 Jaakkola’s proposed method

Jaakkola’s algorithm is divided into two parts or different steps: First, the
value Q-function is computed by means of a Monte-Carlo (MC) method
[Sutton and Barto, 1998][Barto and Duff, 1994]. The obtained policy assures
a higher reward as long as for some m:

max
a

[Q(m, a)− V (m)] > 0 (3.16)

The averaged reward is not known by the learner and, in order to compute the
Q-values, the true averaged reward is replaced by an incremental estimation
of the expected reward. In a second step, as detailed in Equation 3.17, the
policy is improved by increasing the probability of taking the best action as
defined by Q(m, a)

π(a|mn) → π(a|mn) + ε[Qn(mn, a)− Vn(mn)] (3.17)

When the condition expressed in Equation 3.16 is not true, the algorithm
has reached a local maximum and the learning process finishes. As afore-
mentioned, the aim of this method is not to wait for the Monte-Carlo evalua-
tion to converge, but to help the policy to find optimality. Also, the authors
proposed an on-line version of the algorithm where the policy is changed at
the same time with the calculation of the Q-values. For more information on
this work refer to [Jaakkola et al., 1995].

3.2.2 Baird and Moore’s VAPS

The VAPS (Value and Policy Search) algorithm offers the possibility of a
flexible selection among different types of RL algorithms depending on the
expression chosen to compute an error function. Furthermore, the VAPS
algorithm includes Q-learning, SARSA and advantage learning. In addition,
Baird and Moore’s method allows policy search and value-based algorithms to
be combined. This last possibility has been studied in this research work. The
method procedure starts by computing the eligibility trace for the current
policy as stated in Equation 3.18 and Equation 3.19;

∆et =
δ ln P (ut−1|st−1)

δw
(3.18)

et = et−1 + ∆et (3.19)
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Starting from a general VAPS formulation, possibilities appear when select-
ing an RL methodology (QL, SARSA, advantage learning, value-iteration or
policy-value), each one with a different error function ε(st) that calculates
the error at each step time. The combination of policy search and value
function has an error function as detailed in Equation 3.20;

εSARSA−Policy(st) = (1− β)εSARSA(st) + β(b− γ′Rt) (3.20)

where εSARSA is the error function for the value-function approach, b is a
reinforcement baseline, γ′ represents a discount factor and β defines a mixing
term. Baird’s “hybrid” algorithm proposes a combination of a pure policy
algorithm and a SARSA Q-valued method. Adjustments of parameter β
between 0 and 1 allows us to go back and forth between both methods. When
β = 0 the algorithm totally learns a Q-function that satisfies the Bellman
equation. On the other hand, if β = 1, the algorithm is reduced to Williams’
REINFORCE algorithm and directly learns a policy that will minimize the
expected total discounted reward. The error function εSARSA(st) is obtained
as defined in Equation 3.21:

εSARSA(st) =
1

2
E2[Rt−1 + γQ(xt, ut)−Q(xt−1, ut−1)] (3.21)

Finally, the update procedure is formulated in Equation 3.22 and Equa-
tion 3.23;

∆wt = −α[
δεSARSA−Policy(st)

δw
+ εSARSA−Policy(st)et] (3.22)

wt = wt−1 + ∆wt (3.23)

For more information on this work refer to [Baird and Moore, 1999].

3.2.3 Sutton’s generalization

This approach considers the standard MDP framework and generalizes “hy-
brid” policy-valued methodologies in a mathematical sense. The work pre-
sented by Sutton’s team is a theoretical convergence demonstration where
the authors prove for the first time that a generalized version of a policy it-
eration with an arbitrary differentiable function approximator is convergent
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to local optima. Therefore, the gradient can be aided by an approximate
action-value or advantage function if the last one is compatible with the pol-
icy parametrization, accomplishing Equation 3.24, in order to speed up the
convergence time of the algorithm.

δfw(s, a)

δw
=

δπ(s, a)

δθ

1

π(s, a)
(3.24)

where s and a represent the state-action pair. π and fw are any differentiable
function approximators for the policy and value function with parameters θ
and w respectively. The policy parameters are updated according to Equa-
tion 3.25;

θk+1 = θk + αk

∑
s

dπk(s)
∑
a

δπk(s, a)

δθ
fwk(s, a) (3.25)

being αk any step size sequence and dπk(s) a discounted weighting of state
transition probabilities encountered starting at s0 and then following π:
dπ(s) =

∑∞
t=0 γtPr {st = s|s0, π}. 0 < γ < 1 defines a discount rate. For

more information on this work refer to [Sutton et al., 2000].

3.2.4 Actor-Critic solutions

Actor-Critic [Witten, 1977] is a methodology to solve RLP. These algorithms
are considered “hybrid” algorithms. Actor-Critic algorithms have two dis-
tinctive parts. The actor and the critic. The actor part contains the policy
to be followed. On the other hand, the critic observes the state evolution and
criticizes the actions taken by the actor. The critic contains a value func-
tion which tries to learn according to the actor policy. Actor-critic methods
try to combine the advantages of actor-only methods (policy search meth-
ods) with critic-only methods (value-based algorithms) similar to those done
in the “hybrid” methodologies mentioned before. Actor-Critic algorithms
have been successfully applied to various RL tasks: ASE/ACE architecture
for pole balancing [Barto et al., 1983] [Gullapalli, 1992], RFALCON for pole
balancing and for control of a ball-beam system [Lin and Lin, 1996].

Kimura’s traced actor

The algorithm presented is an Actor-Critic, in which the actor updates a
stochastic policy using eligibility traces of its parameters. The critic mission
provides an appropriate baseline function to the actor using the value func-
tion. Studies carried out earlier, relating to Actor-Critic methods and the
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use of eligibility traces focused on the critic. Kimura’s algorithm proposes
for the first time to apply them to the actor parameter update procedure.
Therefore, the actor improves its policy using the gradient of its return.

Suppose the agent generates a control action according to its policy
π(at, W, st). In response, the environment generates a new state xt+1 and
gives an immediate reward rt. With this information, the critic is able to
provide a TD-error to the actor following the equation:

(TD − error) = [rt + γṼ (st+1)]− Ṽ (st) (3.26)

where 0 ≤ γ < 1 is a discount factor and Ṽ (s) is an estimate of the value
function computed by the critic. With the information offered by the critic,
the actor upgrades its policy. First, it calculates the eligibility trace for every
parameter of the policy:

ei(t) =
δ

δwi

ln(π(at,W, st)) (3.27)

Di(t) = ei(t) + βDi(t− 1) (3.28)

and then the actor policy parameters are updated following Equation 3.29
and Equation 3.30;

4wi(t) = (TD − error)Di(t) (3.29)

W ← W + αp4W (t) (3.30)

0 ≤ β < 1 is a discount factor for the eligibility trace and αp is the learning
rate for the actor. Finally, the critic updates its value function according
to TD methods. Taking a deeper look into the algorithm, reveals that this
method is very similar to Kimura’s policy search method presented in section
3.3.1. If γ = β and the value function is replaced by a fixed reinforcement
baseline; the two algorithms are identical. One of the main features of this
algorithm is that both, the policy function and the value function, are com-
pletely independent, and it’s possible that the actor learns the policy without
the convergence of the critic’s value function. If the critic approximates its
value function, the actor’s policy improvement will be accelerated. For more
information on this work refer to [Kimura and Kobayashi, 1998].
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Konda’s projection

As in Kimura’s Actor-Critic algorithm, Konda’s actor is based on a para-
meterized function which is updated by gradient estimation and the critic is
implemented using a TD algorithm, but of the Q-value function type. The
author’s main contribution is that, due to the small dimension of the para-
meters’s vector updated by the actor compared with the space dimension, it
is not necessary for the critic to find the exact approximated value function,
but what they named a reduced ”projection” of the function.

At any time step k, let rk be the parameter vector of the critic, Zk its
eligibility trace and αk a scalar estimate of the average cost. If (Xk, Uk) is
the state-action pair at time k, the update procedure of the critic is stated
as follows:

αk+1 = αk + γk(c(Xk, Uk)− αk) (3.31)

rk+1 = rk + γkdkZk (3.32)

TD dk is defined as:

dk = c(Xk, Uk)− αk + r′kφθk
(Xk+1, Uk+1)− r′kφθk

(Xk, Uk) (3.33)

where γk is a positive step size parameter. Besides, authors propose two
different TD algorithms for updating the eligibility trace:

TD(1) critic:

zk+1 =

{
Zk + φθk

(Xk+1, Uk+1) ifXk+1 6= x∗

φθk
(Xk+1, Uk+1) otherwise

}
(3.34)

TD(0 < λ < 1) critic:

Zk+1 = λZk + φθk
(Xk+1, Uk+1) (3.35)

Finally, the actor updates its parameters according to:

θk+1 = θk + βkΓ(rk)r
′
kφθk

(Xk+1, Uk+1)ψθk
(Xk+1, Uk+1) (3.36)

where Γ(∗) is a scalar that controls the step size βk of the actor, taking into
account the current estimate rk of the critic. For more information on this
work refer to [Konda and Tsitsiklis, 2003].
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3.2.5 Ng and Jordan’s PEGASUS

One of the most important drawbacks of applying policy gradient methods to
POMDPs are high variances in estimations, caused in part by stochastic state
transitions. Thus, executing a fixed number of transitions starting from the
same initial state can lead to obtaining different rewards. In order to reduce
variance estimates, the authors present PEGASUS (Policy Evaluation-of-
Goodness and Search Using Scenarios), a model-based, off-line, policy gra-
dient algorithm designed for searching policies in MDPs or POMDPs, which
proposes to transform a common POMDP with stochastic state transitions
into a deterministic one. This process is done by recording the random num-
bers generated between each observed state transition and “fixing” them, so
the simulated world is no longer stochastic. This trick allows us to compute
precisely the average reward obtained for each trial, and we are assure that
differences in gradient estimates are due to changes between policies and not
to the variance introduced by transition between states. Furthermore, given
n different simulated trials s1

0, ..., s
n
0 , the value function can be computed as

a deterministic function:

V̂ (π) =
1

n

n∑

i=1

R′(si
0) + γR′(si

1) + ... + γfR′(si
f ) (3.37)

where si
0, s

i
1, ..., s

i
f is the sequence of states visited deterministically by the

policy π, the initial state being s0. Thus, the problem is transformed into
a Monte-Carlo [Sutton and Barto, 1998] approach with the difference that
its randomization is fixed, so it need only generate n samples and observe
the reward obtained to adjust the policy π. Since V̂ (π) is a deterministic
function, the policy search process used could be a standard optimization
method. For more information on this work refer to [Ng and Jordan, 2000].
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3.3 Summary

The table below summarizes the main features of the algorithms studied in
this chapter. The table classifies the algorithms according to some defined
features: The function used to evaluate the performance of the algorithm,
the requirement of a model of the environment, the possibility to implement
the algorithm on-line and if the method is biased. The already mentioned
classification between pure and hybrid methods has also been included in
this table.

Method Performance Biased Use of Hybrid or On-line
analysis est. a Model Pure possibility

REINFORCE ∇η(θ) + Baseline No Model-free Pure Yes
Kimura’s ∇ηβ(θ) + Baseline Yes Model-free Pure Yes
B&B ∇ηβ(θ) Yes Model-free Pure Yes
Marbach’s Differential Rewards Yes Model-free Pure Yes
Jaakkola’s Qπ(s, a) Yes Model-free Hybrid Yes
VAPS Combination Yes Model-free Hybrid Yes
Sutton’s General funct. approx. Yes Model-free Hybrid Yes
Kimura’s A/C V π(s) Yes Model-free Hybrid Yes
Konda’s Qπ(s, a) Yes Model-free Hybrid Yes
PEGASUS V π(s) Yes Model-based Hybrid No

Table 3.1: A summary of the algorithms described in Chapter 3.



Chapter 4

Policy Gradient Methods in
Robotics

This chapter presents the main contributions obtained in real robot appli-
cations using some of the policy gradient methodologies mentioned in the
previous chapter.

4.1 Bagnell’s Helicopter Flight

As mentioned before, direct policy search has better capabilities of finding
solutions compared with value-based methods when the environment is not
totally observable (POMDP). The solution does not need to be optimal,
and sub-optimal convergence is usually enough for structured controllers to
perform well. Following this idea, Bagnell’s team described the successful
application of the PEGASUS policy search algorithm (see Section 3.2.5 for
details) to design a controller for an autonomous helicopter flight.

The identification of the controller is performed off-line, so the learning
procedure is carried out previously using a simulated model of the helicopter.
When the controller achieves a reliable confidence level, the authors trans-
ferred the learned controller to the real machine. The controller is represented
by a simple neural network where a total of 10 weights are the parameters
to be updated during the learning process. The reward function depends on
the helicopter translational deviation in the x and y axis. According to the
PEGASUS learning procedure, a set of trajectories with a fixed horizon was
used to modify the controller parameters to the optimal ones.

The results obtained show the viability of the algorithm in a difficult
control problem. Future approaches will try the challenging task of im-
plementing the learning on-line, intending to respond to critical failures
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of the helicopter in real time. For more information on this work refer to
[Bagnell and Schneider, 2001].

4.2 Rosenstein and Barto’s Weightlifter

Although the results presented here are simulated, the implementation of
Rosenstein and Barto’s algorithm, despite its simplicity, is the essence of di-
rect policy methods based on gradient computation. The authors designed
what they called a “biologically motivated algorithm” that easily adapted
through learning. The RL problem deals with a simulated weightlifter au-
tomata that tries to perform a payload shift task with a limited maximum
torque at each of the three robot joints.

The parameterized policy is represented by a total set of 24 parameters
which characterize two proportional-derivative (PD) controllers. Starting
at a base point θ0, the algorithm performs a simple random search (SRS)
in the parameter dimension by adding a perturbation amount ∆θ to each
parameter. This amount is normally distributed with zero mean with a
variance equal to a search size σ. Through iterations, each new point θ0 +
∆θ is evaluated by a function which computes the total amount of torque
accumulated during a trial. In order to assure exploration, the algorithm
updates a previous point θ with the new one θ +∆θ, with a fixed probability
β or the best one found at that moment with probability 1− β. The search
size is also updated every iteration, modified by a decay factor γ until a
minimum is reached σmin.

The results obtained, even though they are considered good, are at-
tributed not only to the SRS algorithm itself, but to other aspects such
as the controller implementation and some experimental issues. The authors
propose as future work the use of more sophisticated policy gradient methods
than Baxter and Bartlett’s or Sutton’s. For more information on this work
refer to [Rosenstein and Barto, 2001].

4.3 Kohl’s Quadrupedal Locomotion

This approach applies an RL policy gradient method for a learning task
where the commercial quadrupedal robot created by Sony, AIBO, tries to
find the fastest possible walking speed. The robot’s behavior is defined by
a set of 12 parameters which refer to different aspects of AIBO’s dynamics:
front and rear locus, different robot heights,... Since Kohl’s team does not
know the form of its policy, it is impossible to compute its gradient exactly.
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The solution is a degenerated form of a policy gradient algorithm, inspired
by the one proposed by Baxter and Bartlett (see Section 3.1.3 for details).

Starting from an initial parameter vector, the algorithm generates a set
of random policies by adding (+ε, 0,−ε) to each parameter. This amount
is a constant value that is relatively small compared to the parameter it-
self. Then the method evaluates each of the generated policies and estimates
the partial derivative in each of the 12 dimensions of the parameter vector.
After classifying the obtained results, an average score for each of the clas-
sifications is calculated and an adjustment vector can be constructed. Next
iteration’s policy is modified with this adjustment. The process is repeated
until convergence.

The algorithm commented on here is not of the form as the others ana-
lyzed in our survey, but Kohl’s method is also based on the gradient of the
reward perceived and its results demonstrate the feasibility of policy gradient
methods in practicable robot applications. The simplicity of the algorithm
used in the calculation of AIBO’s gait parameters reinforce the use of policy
gradient methods in real unknown environments, since its results show that
they generated one of the fastest walks known for this quadrupedal robot.
For more information on this work refer to [Kohl and Stone, 2004].

4.4 Tedrake’s Simple 3D Biped

The learning problem studied here deals with a biped robot walking from a
blank-state. The RL algorithm used to carry out the learning procedure is
a policy gradient hybrid method originally proposed by Kimura (presented
in Section 3.2.4). Small modifications of this algorithm improve the weight
update step, guiding it in the direction of the performance gradient. The
algorithm used in this application is an Actor-Critic, in which the actor
updates an stochastic policy using eligibility traces of its parameters. The
critic’s mission is to provide an appropriate baseline for the actor using some
kind of value function. The simplicity of the robot presented allows the
authors to learn a policy easily with a single output which controlled a 9
DOF system.

As stated previously, policy gradient actor-critic algorithms use two func-
tion approximators, one implemented on the actor assigned to execute the
policy, and another for the approximation of the value function used by the
critic to judge the actions taken by the actor. Tedrake’s algorithm uses in
both functions parameterized linear approximators using non linear features.

The algorithm tested in this simplified robot seems to perform well, and
once the policy is learned, the robot easily adapts to small changes in the
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terrain. Moreover, the authors propose working further in the same direction
in order to reduce biped constraints and study the possibility of applying the
same algorithm to more sophisticated bipeds. For more information on this
work refer to [Tedrake et al., 2004].

4.5 Matsubara’s Biped Robot

The work presented here demonstrates the feasibility of policy gradient meth-
ods applied to a real biped locomotion problem. In particular, as in a pre-
vious section, the authors apply Kimura’s actor-critic algorithm (presented
in Section 3.2.4) to its RLP. The partial observability of its space dimen-
sion conceives the learning framework as a POMDP, thus, the impossibility
of computing the exact value function directs the authors to using a policy
gradient actor-critic algorithm. The learning procedure will be performed
on-line. The characteristics of the environment justify the aid of a value
function for rapid learning. If the biped does not learn or takes too long to
do so, it will fall down and the learning process finishes without reaching the
objectives.

The biped controller is a CPG (central pattern generator) composed of
a neural oscillator, whose weights are the policy parameters to be learnt by
the actor. The critic is represented by a value function with its own set
of parameters. Both policy and value approximators are modeled using a
normalized Gaussian network (NGnet). The reward function combines the
maintenance of the upright position as the first requirement and the forward
progress in a second term.

The results obtained show an efficient learning policy gradient method
able to converge within a short number of trials. On the other hand, the
authors noted the importance of a good sensory feedback controller in order
to achieve satisfactory results. For more information on this work refer to
[Matsubara et al., 2005].



Chapter 5

Neural Policy Gradient
Algorithm (NPGA)

The objective of this research work is focused on the study of stochastic policy
gradient methods as an alternative substitute to value-based algorithms in
on-line robot learning. To this end, after comparing the advantages and draw-
backs of different methodologies analyzed in previous sections, the selected
algorithm for this initial approach to policy gradient methods is Baxter and
Bartlett’s direct gradient method. The small computational requirements
of the method and its basic mathematical foundation make this algorithm
an easy-to-follow methodology and a good test platform for the experiments
proposed in the next chapter. Baxter and Bartlett’s algorithm procedure is
summarized in Algorithm 1.

Algorithm 1: Baxter and Bartlett’s OLPOMDP algorithm
1. Initialize:

T > 0
Initial parameter values θ0 ∈ RK

Initial state i0
2. Set z0 = 0 (z0 ∈ RK)
3. for t = 0 to T do:

(a) Observe state yt

(b) Generate control action ut according to current policy µ(θ, yt)
(c) Observe the reward obtained r(it+1)
(d) Set zt+1 = βzt + ∇µut (θ,yt)

µut (θ,yt)

(e) Set θt+1 = θt + αtr(it+1)zt+1

4. end for

The algorithm works as follows: having initialized the parameters vector
θ0, the initial state i0 and the eligibility trace z0 = 0, the learning procedure
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will be iterated T times. At every iteration, the parameters’ eligibility zt will
be updated according to the policy gradient approximation. The discount
factor β ∈ [0, 1) increases or decreases the agent’s memory of past actions.
The immediate reward received r(it+1), and the learning rate α allows us
to finally compute the new vector of parameters θt+1. The current policy
is directly modified by the new parameters becoming a new policy to be
followed by the next iteration, getting closer to a final policy that represents
a correct solution of the problem.

As aforementioned, the algorithm is designed to work on-line. The func-
tion approximator adopted to define our policy is an artificial neural network
(ANN) whose weights represent the policy parameters to be updated at every
iteration step. Thus, the neural policy gradient algorithm (NPGA) is defined.

For a better understanding, the next lines will relate closely to the update
weight process done by the algorithm. Once the ANN is initialized at random,
the network will be given an observation of the state and, as a result, a
stochastic control action is computed. As a result, the learner will be driven
to another state and will receive a reward associated with this new state.
The first step in the parameter update procedure is to compute the ratio:

∇µut(θ, yt)

µut(θ, yt)
(5.1)

for every weight of the network. In artificial neural networks like the one
used in the algorithm, the expression defined in step 3.d of Algorithm 1 can
be rewritten as:

zt+1 = βzt + δtyt (5.2)

At any step time t, the term zt represents the estimated gradient of the
reinforcement sum with respect to the network’s layer weights. In addition,
δt refers to the local gradient associated with a single neuron of the ANN
and is multiplied by the input to the neuron yt. In order to compute these
gradients, we evaluate the soft-max distribution for each possible future state
exponentiating the real-valued ANN outputs {o1, ..., on}, being n the number
of neurons of the output layer [Aberdeen, 2003].

After applying the soft-max function, the outputs of the neural network
give a weighting ξj ∈ (0, 1) to each of the possible control actions. Finally,
the probability of the ith control action is then given by:

Pri =
exp(oi)∑n

a=1 exp(oa)
(5.3)
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Figure 5.1: Schema of the ANN architecture adopted.

where n is the number of neurons at the output layer. Actions have been
labeled with the associated control action and chosen at random from this
probability distribution. Once we have computed the output distribution
over all possible actions, the next step is to calculate the gradient for the ac-
tion chosen by applying the chain rule. The whole expression is implemented
similarly to error back propagation [Haykin, 1999]. Before computing the
gradient, the error on the neurons of the output layer must be calculated.
This error is given by Equation 5.4.

ej = dj − Prj (5.4)

The desired output dj will be equal to 1 if the action selected was oj, and 0
otherwise (see Figure 5.2).

With the soft-max output error calculation completed, the next phase
consists of computing the gradient at the output of the ANN and back prop-
agate it to the rest of the neurons of the hidden layers. For a local neuron j
located in the output layer, we may express the local gradient as:

δo
j = ejϕ

′
j(oj) (5.5)

where ej is the soft-max error at the output of neuron j, ϕ′j(oj) corresponds
to the derivative of the activation function associated with that neuron, and
oj is the function signal at the output for that neuron. So we do not back
propagate the gradient of an error measure, but instead back propagate the
soft-max gradient of this error. Therefore, for a neuron j located in a hidden
layer, the local gradient is defined as follows:
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δh
j = ϕ′j(oj)

∑

k

δkwkj (5.6)

When computing the gradient of a hidden-layer neuron, the previously ob-
tained gradient of the following layers must be back propagated. In Equa-
tion 5.6 the term ϕ′j(oj) represents the derivative of the activation function
associated to that neuron, oj is the function signal at the output for that
neuron and finally the summation term includes the different gradients of
the following neurons back propagated by multiplying each gradient to its
corresponding weighting (see Figure 5.3).

Having all the local gradients of all the neurons calculated, the expression
in Equation 5.2 can be obtained. Finally, the old parameters are updated

1
oδ

o
nδ

1
hδ = 11w

1nw

∑'
1 1( )hoϕ ×

Figure 5.3: Gradient computation for a hidden layer neuron.
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following expression 3.(e) of Algorithm 1:

θt+1 = θt + αr(it+1)zt+1 (5.7)

The vector of parameters θt represents the network weights to be updated,
r(it+1) is the reward given to the learner at every time step, zt+1describes the
estimated gradients mentioned before and, at last, we have α as the learning
rate of the algorithm.



Chapter 6

Experimental Results

This chapter presents the experiments carried out in this research project ap-
plying the neural policy gradient algorithm (NPGA) detailed in Chapter 5.
The chapter is organized into two main sections. In the first section, de-
tails of a simulated robot task are presented. In the second, results on a
RL benchmark will point out the suitability of policy methods in problems
influenced by the generalization problem.

6.1 Target-following task

The experiment consisted of learning a target following behavior using the
underwater robot URIS. Experiments were performed in simulation. The
next lines will describe the different elements that took place in our problem.
First, the simulated world will be detailed. Secondly, the underwater vehicle
URIS is presented. Section 6.1.3 describes the neural-network controller.
Finally, some results and conclusions are given.

6.1.1 The world

As previously mentioned, the problem deals with the simulated model of the
autonomous underwater vehicle (AUV) URIS navigating a two-dimensional
world constrained in a plane region without boundaries. The vehicle can be
controlled by two degrees of freedom (DOF), surge (X movement) and yaw
(rotation with respect to z-axis) by applying 4 different control actions: a
force in either the positive or negative surge direction, and another force in
either the positive or negative yaw rotation. The simulated robot was given
a reward of 0 if the vehicle reaches the objective position (if the robot enters
a circle with a 1 unit radius, the target is considered reached) and a reward
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equal to -1 in all other states. To encourage the controller to learn how to
control the robot and reach the target independently of the starting state, the
AUV position was reset every 50 (simulated) seconds to a random location
in x and y between [-20, 20], and, at the same time, the target position was
set to a random location within the same boundaries. The sample time was
set to 0.1 seconds.

6.1.2 URIS AUV description

Underwater Robotic Intelligent System is indicated by the acronym URIS.
This Unmanned Underwater Vehicle (UUV) is the result of a project started
in 2000 at the University of Girona. The main purpose of this project was to
develop a small-sized underwater robot with which to experiment easily in
various research areas such as control architectures, dynamics modeling and
underwater computer vision. Another goal of the project was to develop an
Autonomous Underwater Vehicle (AUV) with the required systems, hardware
and software as the word autonomous implies. Other principles considered in
the design were flexibility in the tasks to be accomplished and generalization
in the developed systems.

The design of this vehicle was clearly influenced by its predecessor Garbi
UUV [Amat et al., 1996], although some mechanical features were redesigned.
The shape of the vehicle is compounded of a spherical hull surrounded by
various external elements (the thrusters and camera sensors). The hull is
made of stainless steel with a diameter of 350mm, designed to withstand
pressures of 3 atmospheres (30 meters depth). On the outside of the sphere
there are two video cameras (forward and down looking) and 4 thrusters (2
in X direction and 2 in Z direction). Figure 6.1 shows a picture of URIS
and its body fixed coordinate frame. Referred to this frame, the 6 degrees of
freedom (DOFs) in which a UUV can be moved are: surge, sway and heave
for the motions in X, Y and Z directions respectively; and roll, pitch and
yaw for the rotations about the X, Y and Z axes respectively.

URIS weighs 30 Kg., which is approximately equal to the mass of the
water displaced and, therefore, the buoyancy of the vehicle is almost neutral.
Its gravity center is in the Z axis, at some distance below the geometrical
center. The reason for this is the distribution of the weight inside the sphere.
The heavier components are placed at the bottom. The difference between
the two centers provides stability in both pitch and roll DOFs. The further
down the gravitational center is, the higher the torque which has to be applied
to the X or Y axes to incline the robot a certain degree in roll or pitch,
respectively.

The movement of the robot is accomplished by its 4 thrusters. Two
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Figure 6.1: URIS’ AUV, (Left) URIS in experimental test. (Right) Robot
reference frame.

of them, labeled X1 and X2 in Figure 6.1(Right), exert a force in the X
axis and a torque in the Z axis. The resultant force of both trusters is
responsible for the surge movement of the vehicle, and the resultant torque
is responsible for the yaw movement. Analogously, the other two thrusters,
Z1 and Z2, exert a force in the Z axis and a torque in the Y axis. The
resultant force is responsible for the heave movement of the vehicle, and the
resultant torque is responsible for the pitch movement. In this case, the pitch
movement is limited to only a few degrees around the stable position, since
the gravity and buoyancy forces cause a high stabilization torque compared
to that of the thruster. Therefore, only 4 DOFs can be actuated leaving
the sway and roll movements without control. Like the pitch DOF, the roll
DOF is stabilized by the gravity and buoyancy forces. The sway movement
is neither controlled nor stabilized by any force, which makes it sensitive to
perturbations like water currents or the force exerted by the umbilical cable.
Hence, URIS is a nonholonomic vehicle.

The mathematical model of URIS has been computed using parame-
ter identification methods [Ridao et al., 2004]. The whole model has been
adapted to the problem so the hydrodynamic equations of motion for an
underwater vehicle with 6 DOFs [Fossen, 1995] have been uncoupled and re-
duced to moderate a robot with two DOFs. Let us consider the dynamic
equations for the surge and yaw DOFs:

u̇ =
X

(m−X ·
u
)

︸ ︷︷ ︸
γ

− Xu

(m−X ·
u
)
·

︸ ︷︷ ︸
α

u− Xu|u||u|
(m−X ·

u
)

︸ ︷︷ ︸
β

·u +
τp

(m−X ·
u
)

︸ ︷︷ ︸
δ

(6.1)
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α β γ δ

UNITS N∗s
Kg∗m

N∗s2

Kg∗m2 Kg−1 N
Kg

SURGE -0.3222 0 0.0184 0.0012
YAW 1.2426 0 0.5173 -0.050

Table 6.1: URIS model parameters for Surge and Yaw.

ṙ =
N

(m−N ·
r
)

︸ ︷︷ ︸
γ

− Nr

(m−N ·
r
)
·

︸ ︷︷ ︸
α

r − Nr|r||r|
(m−N ·

r
)

︸ ︷︷ ︸
β

·r +
τp

(m−N ·
r
)

︸ ︷︷ ︸
δ

(6.2)

Then, due to the identification procedure [Ridao et al., 2004], expressions in
Equation 6.1 and Equation 6.2 can be rewritten as follows:

v̇x = αxvx + βxvx|vx|+ γxτx + δx (6.3)

v̇ψ = αψvψ + βψvψ|vψ|+ γψτψ + δψ (6.4)

where v̇x and v̇ψ represent the acceleration in both the surge and yaw DOFs,
vx is the linear velocity in surge and vψ is the angular velocity in the yaw
DOF. The force and torque excerted by the thrusters in both DOFs are
indicated as τx and τψ. The model parameters for both DOFs are stated as
follows: α and β coefficients refer to the linear and the quadratic damping
forces, γ represents a mass coefficient and the bias term is introduced by δ.
The values of the identified parameters are indicated in Table 6.1

6.1.3 The controller

A one-hidden-layer neural-network with 4 input nodes, 3 hidden nodes and
4 output nodes was used to generate a stochastic policy. One of the inputs
corresponds to the distance between the vehicle and the target location,
another represents the yaw difference between the vehicle’s current heading
and the desired heading to reach the objective position. The other two
inputs represent the derivatives of the distance and yaw difference at the
current time-step. Each hidden and output layer has the usual additional bias
term. The activation function used for the neurons of the hidden layer is the
hyperbolic tangent type (see Equation 6.5 and Figure 6.2), while the output
layer nodes are linear. The four output neurons have been exponentiated and
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Figure 6.2: The hyperbolic tangent function.

normalized as explained in Chapter 5 to produce a probability distribution.
Control actions are selected at random from this distribution.

tanh(z) =
sinh(z)

cosh(z)
(6.5)

6.1.4 Learning Results

The controller was trained in an episodic task. Robot and target positions
were reset every 50 seconds so the total amount of reward per episode per-
ceived varies depending on the episode. Even though the results presented
have been obtained, as explained in Section 6.1.1, in order to clarify the
graphical results of time convergence of the algorithm, some constraints have
been applied to the simulator: Target initial position was fixed to (0, 0) and
robot initial location was set to four random locations, x = ±20 and y = ±20.
Therefore, the total amount per episode when converged was the same.

The number of episodes was set to 100.000. For every episode, the total
amount of reward perceived was calculated. Figure 6.3 represents the perfor-
mance of the NPGA as a function of the number of episodes. The episodes
were averaged over bins of 50 episodes. The experiment was repeated over
100 independent runs, and the results presented are the mean of these runs.
The simulated experiments were repeated and compared for different values
of α and β.

As can be appreciated in Figure 6.4, the optimal performance (within
the neural network controller used here) is around -100 for this simulated
problem due to the fact that the puck and target locations are reset every
50 seconds and for this reason the vehicle must be away from the target a
fraction of the time. The best results are obtained when α = 0.00001 and
β = 0.999, see Figure 6.4.

Figure 6.6 represents the behavior of the trained robot controller. For the
purpose of the illustration, only the target location was reset to a random
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Figure 6.3: Performance of the neural-network puck controller as a function of
the number of episodes. Performance estimates were generated by simulating
100.000 episodes, averaging them over bins of 50 episodes. The process was
repeated over 100 independent runs. The results are a mean of these runs.
α = 0.000001, for different values of β = {0.999, 0.99, 0.97}.

location, not the robot location.

6.1.5 Conclusions and discussion

The results obtained show a convergence of the NPGA. As can be seen Fig-
ure 6.6, once learning period finishes, the trained robot is able to fulfill the
target following task. The algorithm’s implementation is easy and simple.
Although the network used to generate the policy is small the learning results
are satisfactory. In order to obtain definitive results related to convergence
time, the NPGA must be compared to a value-based or a hybrid algorithm
in the same task. Thus, the results present policy Methods as an alternative
approach to Value Methods to solve Reinforcement Learning problems.

6.2 “Mountain-Car” task

This section presents the application of the NPGA to the “mountain-car”
benchmark. This problem is widely accepted by the RL research commu-
nity as a convenient benchmark to test the convergence and generalization
capabilities of an RL algorithm. The ”mountain-car” benchmark is not a
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Figure 6.4: Performance of the neural-network puck controller as a function of
the number of episodes. Performance estimates were generated by simulating
100.000 episodes, averaging them over bins of 50 episodes. The process was
repeated over 100 independent runs. The results are a mean of these runs.
α = 0.00001, for different values of β = {0.999, 0.99, 0.97}.

continuous task like a robot behavior, but an episodic task. Moreover, con-
trary to a robot behavior, the environment is completely observable without
noise. These qualities make this problem an excellent platform for result
analysis. In order to have a performance baseline, the Q learning algorithm
was also applied to the problem. The results obtained by both algorithms
are compared and some conclusions are extracted at the end of this section.

6.2.1 “Mountain-Car” task definition

The ”mountain-car” task [Moore, 1991, Singh and Sutton, 1996] was designed
to evaluate the generalization capability of RL algorithms. In this problem,
a car has to reach the top of a hill. However, the car is not powerful enough
to drive straight to the goal. Instead, it must first reverse up the oppo-
site slope in order to accelerate, acquiring enough momentum to reach the
goal. The states of the environment are two continuous variables: the po-
sition p and the velocity v of the car. The bounds of these variables are
−1.2 ≤ p ≤ 0.5; and −0.07 ≤ v ≤ 0.07. Action a is a discrete variable
with two values {−1, +1}, which correspond to reverse thrust and forward
thrust respectively. The mountain geography is described by the equation:
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Figure 6.5: Performance of the neural-network puck controller as a function of
the number of episodes. Performance estimates were generated by simulating
100.000 episodes, averaging them over bins of 50 episodes. The process was
repeated over 100 independent runs. The results are a mean of these runs.
α = 0.0001, for different values of β = {0.999, 0.99, 0.97}.

altitude = sin(3p). Figure 6.7 shows the ”mountain-car” scenario. The dy-
namics of the environment, which determines the state evolution, is defined
by these two equations:

vt+1 = bound[vt + 0.001 at − 0.0025 cos(3 pt)] (6.6)

pt+1 = bound[pt + vt+1] (6.7)

in which the bound operation maintains each variable within its allowed
range. If pt+1 is smaller than its lower bound, then vt+1 is reset to zero. On
the other hand, if pt+1 achieves its higher bound, the episode finishes since
the task is accomplished. The reward is -1 everywhere except at the top of
the hill, where it is 1. New episodes start at random positions and velocities
and run until the goal has been reached or a maximum of 200 iterations have
elapsed. The optimal state/action mapping to solve the ”mountain-car” task
is not trivial since, depending on the position and the velocity, a forward or
reverse action must be applied.
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Figure 6.6: The behavior of a trained robot controller. Results of a target
following task after the learning period has been completed.

6.2.2 Results with the Q learning algorithm

To provide a performance baseline, the classic Q learning algorithm was ap-
plied. The state space was finely discretized, using 180 states for the position
and 150 for the velocity. The action space contained only three values, -1, 0
and 1. Therefore, the size of the Q table was 81000 positions. The exploration
strategy was an ε−greedy policy with ε set at 30%. The discount factor was
γ = 0.95 and the learning rate α = 0.5, which were found experimentally.
The Q table was randomly generated at the beginning of each experiment.
In each experiment, a learning phase and an evaluation phase were repeat-
edly executed. In the learning phase, a certain number of iterations were
executed, starting new episodes when it was necessary.

In the evaluation phase, 500 episodes were executed. The policy followed
in this phase was the greedy policy, since only exploitation was desired. In
order to numerically quantify the effectiveness of the learning, the average
time spent in each episode is used. This time is measured as the number of
iterations needed by the current policy to achieve the goal. After running
100 experiments with Q learning, the average episode length in number of
iterations once the optimal policy had been learnt was 50 iterations with 1.3
standard deviation. The number of learning iterations to learn this optimal
policy was approximately 107. Figure 6.8 shows the effectiveness evolution
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Figure 6.7: The ”mountain-car” task domain.

of the Q learning algorithm after different learning iterations.
It is interesting to compare this mark with other state/action policies.

If a forward action (a = 1) is always applied, the average episode length is
86. If a random action is used, the average is 110, see Figure 6.8. These
averages depend highly on the fact that the maximum number of iterations
in an episode is 200, since in many episodes these policies do not fulfill the
goal.

6.2.3 Results with the policy gradient algorithm

A one-hidden-layer neural-network with 2 input nodes, 10 hidden nodes and
2 output nodes was used to generate a stochastic policy. One of the inputs
corresponded to the vehicle’s position, the other represented the vehicle’s
velocity. Each hidden and output layer had the usual additional bias term.
The activation function used for the neurons of the hidden layer was the
hyperbolic tangent type, see Section 6.1.3 for details. The output layer nodes
were linear. The two output neurons were exponentiated and normalized as
explained in Chapter 5 to produce a probability distribution. Control actions
were selected at random from this distribution.

In each experiment, a learning phase and an evaluation phase were repeat-
edly executed. In the learning phase, 500 iterations were executed, starting
new episodes when it was necessary. In the evaluation phase, 200 episodes
were executed. The effectiveness of learning was evaluated by looking at the
averaged number of iterations needed to finish the episode. After running
100 experiments with the NPGA, the average number of iterations, when the
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Figure 6.8: Effectiveness of the Q learning algorithm with respect to the
learning iterations. During the first iterations the efficiency was very low,
requiring many iterations to reach the goal. The graph was obtained by
averaging 100 trials. In each trial, the effectiveness was calculated by av-
eraging the number of iterations to reach the goal in 500 episodes. After
converging, the effectiveness was maximum, requiring only 50 iterations to
accomplish the goal. The 95% confidence intervals are also shown. Finally,
the effectiveness levels of random and forward policies can be observed.

optimal policy had been learnt, was 52.5. And the number of learning itera-
tions to learn this optimal policy was 40.000 learning iterations. Figure 6.9
shows the effectiveness evolution of the NPGA over the learning iterations.

6.2.4 Conclusions and discussion

The results obtained reinforce Policy Methods as an alternative to Value
Methods to solve Reinforcement Learning problems. After performing the
experiments with the Q learning algorithm and the policy gradient algorithm,
it can be concluded:

Simplicity A very simple ANN configuration was able to learn the necessary
policy. However, Q learning, which was affected by the generalization
problem, required 81000 cells to obtain a similar policy.

Effectiveness The minimum iterations to goal achieved by NPGA (52.5)
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Figure 6.9: Effectiveness of the NPGA with respect to the learning iterations.
The graph was obtained by averaging 100 independent trials. In each one, the
effectiveness was calculated by averaging the number of iterations to finish
the episode. In the learning phase, 500 number of iterations were executed,
starting new episodes when it was necessary. In the evaluation phase, 200
episodes were executed.

was practically equal to those achieved by Q learning (50).

Swiftness Although policy methods usually learn slower than value meth-
ods, in this case the NPGA algorithm was much faster than Q learning
(affected by the generalization problem).



Chapter 7

Conclusions and Future Work

This chapter concludes this research project. It first summarizes the main
conclusions that have been extracted from the studies, analysis and imple-
mentations presented in this dissertations. Then, it points out the directions
that will be followed in order to propose a novel policy gradient algorithm
to be used on-line in a real robotic application. This work should finally
contribute with policy gradient methods and, therefore, conduct to the PhD
thesis. Finally, the expected planning is also presented.

7.1 Conclusions

The fundamental theory of policy methods has been surveyed. In this re-
search project several direct policy gradient algorithms have been presented.
Some of them showed theoretical demonstrations of convergence and others
were applied to real robot systems. The main features have been analyzed
and compared.

The methodologies commented can be classified into two main groups:
Pure policy gradient algorithms and hybrid policy-valued methods. Pure pol-
icy gradient algorithms use a function approximator to represent the policy.
Gradient estimates of the current’s policy performance with respect to the
function parameters lead the algorithm to convergence. High variances of
these estimations slow down the convergence time of these algorithms. In or-
der to reduce variance estimates and increase learning speed, hybrid policy-
valued algorithms combine both policy gradient methods with value function
approaches. Pure value methods do not guarantee convergence when dealing
with POMDPs but, on the other hand, pure policy algorithms have the ca-
pability of mildly adapting to non-Markov environments. Thus, the resulting
combined algorithm takes advantages of the strong points of both methods.

52
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Two simulated experiments were carried out for this dissertation. The
objective of this second part was to show the implementation details of a
policy gradient algorithm and to point out its suitability in two applications.
The selected method was Baxter and Bartlett’s algorithm. This method is
a pure policy gradient algorithm. Due to small computational requirements
and its basic mathematical foundation, this algorithm constitutes an easy-
to-follow methodology and was considered a good test platform for obtaining
initial results in this field. An ANN was used as a function approximator
to represent the policy. Its weights represent the policy parameters to be
updated at every iteration step. Thus, the neural policy gradient algorithm
(NPGA) has been clearly defined. This algorithm was applied in two differ-
ent simulated problems. First, the NPGA controlled an underwater robot
performing a target following task. Secondly, the algorithm was tested in the
“mountain-car task” benchmark. The obtained results in both simulations
showed a good performance of the algorithm. The convergence times were
not too long if we consider that a classical value method would have been
affected by the generalization problem and, therefore, spent much much more
iterations to converge. It is also important to note the reduced dimensions
of the ANN used in both tests. The results about the underwater robot have
been published in [El-Fakdi et al., 2005]

7.2 Future Work

As aforementioned, all the experimentation was carried out in simulation.
Desirable future steps would be directed as enumerated in the following:

STEP 1. Simulated learning + Real testing. The objective of this ini-
tial step is to transfer an accurate learned policy (in a simulated envi-
ronment) to the real robot and test the behavior of the policy in real
conditions.

STEP 2. Simulated learning + Real learning + Real testing. A ba-
sic learning will be performed in simulation with a simple model. The
learnt policy will be transferred to the robot and will be refined on-line
while testing.

STEP 3. Real learning + Real testing. The learning process will be car-
ried out on-line with the robot navigating in a real underwater envi-
ronment.

The goal pursued in our research is to achieve at least STEP 2. We are
not sure that STEP 3 can be achieved or, if it is worth this achievement
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in relation with the price that could imply: long convergence time, very
simple applications, structured environments, high computational require-
ments,... In any case, the convergence time will always be important and
NPGA may not be as fast as hybrid algorithms like Matsubara’s biped or
the work presented in by Tedrake’s team. On the other hand, pure policy
gradient algorithms obtain better results in POMDPs. Therefore, the future
work will consist on:

PHASE A Testing the NPGA in STEP 1 and 2, and considering the pos-
sibility os achieving STEP 3.

PHASE B Testing a hybrid algorithm in STEP 1 and 2, and considering
the possibility of achieving STEP 3.

After this implementations some analysis and conclusions will be ex-
tracted. Depending on the results and the problems appeared during this
period, we expect to find out a novel methodology that can improve the
results for our underwater robotics task domain. The theoretical work to-
gether with real experimentation should contribute the topic of policy gra-
dient methods applied to robotics, and should conduct to the fulfillment of
the PhD thesis.

7.3 Planning

The next table details the expected planning of work for the next months:
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 D1 � Survey on policy met
hods 

D2 � Paper about phase A D3 � Paper about phase A an
d B. Conclusions 

D4 � Paper about prelimin
ary PhD results 

D5 � Paper about final PhD
 results 

D6 � PhD dissertation   



Bibliography

[Aberdeen, 2003] Aberdeen, D. A. (2003). Policy-Gradient Algorithms for
Partially Observable Markov Decision Processes. PhD thesis, Australian
National University.

[Amat et al., 1996] Amat, J., Batlle, J., Casals, A., and Forest, J. (1996).
GARBI: a low cost ROV, constrains and solutions. In 6ème Seminaire
IARP en robotique sous-marine, pages 1–22, Toulon-La Seyne, France.

[Anderson, 2000] Anderson, C. (2000). Approximating a policy can be easier
than approximating a value function. Computer science technical report,
University of Colorado State.

[Bagnell and Schneider, 2001] Bagnell, J. and Schneider, J. (2001). Au-
tonomous helicopter control using reinforcement learning policy search
methods. In Proceedings of the IEEE International Conference on Ro-
botics and Automation, Korea.

[Baird and Moore, 1999] Baird, L. and Moore, A. (1999). Gradient de-
scent for general reinforcement learning. Advances in Neural Information
Processing Systems, Vol 11, MIT Press.

[Barto and Duff, 1994] Barto, A. and Duff, M. (1994). Monte-Carlo matrix
inversion and reinforcement learning, volume 6. Morgan Kaufmann.

[Barto et al., 1983] Barto, A., Sutton, R., and Anderson, C. (1983). Neu-
ronlike elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man and Cybernetics, 13:835–846.

[Baxter and Bartlett, 1999] Baxter, J. and Bartlett, P. (1999). Direct
gradient-based reinforcement learning: I. gradient estimation algorithms.
Technical report, Australian National University.

[Baxter and Bartlett, 2000] Baxter, J. and Bartlett, P. (2000). Direct
gradient-based reinforcement learning. In International Symposium on
Circuits and Systems, Geneva, Switzerland.

56



Bibliography 57

[Bellman, 1957] Bellman, R. (1957). Dynamic Programming. Princenton
University Press.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. and Tsitsiklis, J. N. (1996).
Neuro-Dynamic Programming. Athena Scientific, Belmont, MA.

[Carreras, 2003] Carreras, M. (2003). A Proposal of a Behavior-Based Con-
trol Architecture with Reinforcement Learning for an Autonomous Under-
water Robot. PhD thesis, University of Girona.

[Carreras et al., 2003] Carreras, M., Ridao, P., and El-Fakdi, A. (2003).
Semi-Online Neural-Q-learning for real-time robot learning. In IEEE-RSJ
International Conference on Intelligent Robots and Systems (IROS’03),
Las Vegas, USA.

[Dayan, 1992] Dayan, P. (1992). The convergence of TD(λ) for general λ.
Machine Learning, 8:341–362.

[El-Fakdi et al., 2005] El-Fakdi, A., Carreras, M., Palomeras, N., and Ri-
dao, P. (2005). Autonomous underwater vehicle control using reinforce-
ment learning policy search methods. In IEEE Conference and Exhibition
Oceans’05 Europe.

[Fossen, 1995] Fossen, T. I. (1995). Guidance and Control of Ocean Vehicles.
John Wiley and Sons.

[Gullapalli, 1992] Gullapalli, V. (1992). Reinforcement Learning and its Ap-
plication to Control. PhD thesis, University of Massachusetts, Amherst,
COINS Technical Report 92-10.

[Hansen, 1998] Hansen, E. A. (1998). Solving POMDPs by searching in
policy space. In 8th Conference on Uncertainty in Artificial Intelligence,
pages 211–219, Madison, WI.

[Haykin, 1999] Haykin, S. (1999). Neural Networks, a comprehensive foun-
dation. Prentice Hall, 2nd ed. edition.

[Hernandez and Mahadevan, 2000] Hernandez, N. and Mahadevan, S.
(2000). Hierarchical memory-based reinforcement learning. In Fifteenth
International Conference on Neural Information Processing Systems, Den-
ver, USA.

[Jaakkola et al., 1994] Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994).
On the convergence of stochastic iterative dynamic programming algo-
rithms. Neural Computation, 6:1185–1201.



Bibliography 58

[Jaakkola et al., 1995] Jaakkola, T., Singh, S., and Jordan, M. (1995). Re-
inforcement Learning algorithms for partially observable Markov decision
problems, volume 7, pages 345–352. Morgan Kaufman.

[Kimura and Kobayashi, 1998] Kimura, H. and Kobayashi, S. (1998). An
analisis of actor/critic algorithms using eligibility traces: Reinforcement
learning with imperfect value functions. In ICML, pages 278–286.

[Kimura et al., 1997] Kimura, H., Miyazaki, K., and Kobayashi, S. (1997).
Reinforcement learning in pomdps with function approximation. In Fisher,
D. H., editor, Fourteenth International Conference on Machine Learning
(ICML’97), pages 152–160.

[Kohl and Stone, 2004] Kohl, N. and Stone, P. (2004). Policy gradient rein-
forcement learning for fast quadrupedal locomotion. In IEEE International
Conference on Robotics and Automation (ICRA).

[Konda and Tsitsiklis, 2003] Konda, V. and Tsitsiklis, J. (2003). On actor-
critic algorithms. SIAM Journal on Control and Optimization, 42, number
4:1143–1166.

[L’Ecuyer, 1990] L’Ecuyer, P. (1990). A unified view of IPA, SF and LR
gradient estimation techniques. Management Science, 36(11):1364–1383.

[Lin and Lin, 1996] Lin, C. J. and Lin, C. T. (1996). Reinforcement learning
for an ART-based fuzzy adaptive learning control network. IEEE Trans-
actions on Neural Networks, 7(3):709–731.

[Marbach, 1998] Marbach, P. (1998). Simulation-based methods for markov
decision processes. PhD Thesis, Laboratory for Information and Decision
Systems, MIT.

[Marbach and Tsitsiklis, 1998] Marbach, P. and Tsitsiklis, J. N. (1998).
Simulation-based optimization of markov reward processes. Technical re-
port LIDS-P-2411, Massachussets Institute of Technology.

[Marbach and Tsitsiklis, 2000] Marbach, P. and Tsitsiklis, J. N. (2000).
Gradient-based optimization of Markov reward processes: Practical vari-
ants. Technical report, Center for Communications Systems Research,
University of Cambridge.

[Matsubara et al., 2005] Matsubara, T., Morimoto, J., Nakanishi, J., Sato,
M., and Doya, K. (2005). Learning sensory feedback to CPG with policy
gradient for biped locomotion. In Proceedings of the International Confer-
ence on Robotics and Automation ICRA, Barcelona, Spain.



Bibliography 59

[Meuleau et al., 1999] Meuleau, N., Kim, K. E., Kaelbling, L. P., and Cas-
sandra, A. R. (1999). Solving POMDPs by searching the space of finite
policies. In Kaufmann, M., editor, 15th Conference on Uncertainty in
Artificial Intelligence, pages 127–136, Computer science Dep., Brown Uni-
versity.

[Meuleau et al., 2001] Meuleau, N., Peshkin, L., and Kim, K. (2001). Explo-
ration in gradient based reinforcement learning. Technical report, Massa-
chusetts Institute of Technology, AI Memo 2001-003.

[Monahan, 1982] Monahan, G. (1982). A survey of partially observable
markov decision processes. Management Science, 28:1–16.

[Moore, 1991] Moore, A. (1991). Variable resolution dynamic programming:
Efficiently learning action maps on multivariate real-value state-spaces. In
Proceedings of the Eighth International Conference on Machine Learning.

[Murphy, 2000] Murphy, K. P. (2000). A survey of pomdp solution tech-
niques.

[Ng and Jordan, 2000] Ng, A. Y. and Jordan, M. (2000). PEGASUS: A
policy search method for large MDPs and POMDPs. In 16th Conference
of Uncertainty in Artificial Intelligence.

[Ridao, 2001] Ridao, P. (2001). A hybrid control architecture for an AUV.
PhD thesis, University of Girona.

[Ridao et al., 2004] Ridao, P., Tiano, A., El-Fakdi, A., Carreras, M., and
Zirilli, A. (2004). On the identification of non-linear models of unmanned
underwater vehicles. Control Engineering Practice, 12:1483–1499.

[Rosenstein and Barto, 2001] Rosenstein, M. and Barto, A. (2001). Robot
weightlifting by direct policy search. In Proceedings of the International
Joint Conference on Artificial Intelligence.

[Singh et al., 1994] Singh, S., Jaakkola, T., and Jordan, M. (1994). Learn-
ing without state-estimation in partially observable markovian decision
processes. In Proceedings of the Eleventh International Conference on Ma-
chine Learning, New Jersey, USA.

[Singh and Sutton, 1996] Singh, S. and Sutton, R. (1996). Reinforcement
learning with replacing eligibility traces. Machine Learning, 22:123–158.



Bibliography 60

[Smart and Kaelbling, 2000] Smart, W. D. and Kaelbling, L. P. (2000). Prac-
tical reinforcement learning in continuous spaces. In International Con-
ference on Machine Learning.

[Sondik, 1978] Sondik, E. J. (1978). The optimal control of partially observ-
able Markov decision processes over the infinite horizon: Discounted costs.
Operations Research, 26(2):282–304.

[Sutton, 1988] Sutton, R. (1988). Learning to predict by the method of
temporal differences. Machine Learning, 3:9–44.

[Sutton and Barto, 1998] Sutton, R. and Barto, A. (1998). Reinforcement
Learning, an introduction. MIT Press.

[Sutton et al., 2000] Sutton, R., McAllester, D., Singh, S., and Mansour,
Y. (2000). Policy gradient methods for reinforcement learning with func-
tion approximation. Advances in Neural Information Processing Systems,
12:1057–1063.

[Tedrake et al., 2004] Tedrake, R., Zhang, T. W., and Seung, H. S. (2004).
Stochastic policy gradient reinforcement learning on a simple 3D biped.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
IROS’04, Sendai, Japan.

[Tsitsiklis, 1994] Tsitsiklis, J. N. (1994). Asynchronous stochastic approxi-
mation and Q-learning. Machine Learning, 3:185–202.

[Watkins, 1989] Watkins, C. (1989). Learning from Delayed Rewards. PhD
thesis, Cambridge University.

[Watkins and Dayan, 1992] Watkins, C. and Dayan, P. (1992). Q-learning.
Machine Learning, 8:279–292.

[Williams, 1992] Williams, R. (1992). Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine Learning,
8:229–256.

[Witten, 1977] Witten, I. (1977). An adaptive optimal controller for discrete-
time markov environments. Information and Control, 34:286–295.


