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Abstract. This paper proposes a field application of a high-level
Reinforcement Learning (RL) control system for solving the action
selection problem of an autonomous robot in a cable tracking task.
The learning system is characterized by using a policy gradient based
search method for learning the internal state/action mapping. The
function approximator used to represent the policy is a barycentric
interpolator. Policy only algorithms may suffer from long conver-
gence times when dealing with real robotics. In order to speed up
the process, the learning phase has been carried out in a simulated
environment using the hydrodynamic model of the vehicle and, in a
second step, the policy has been transferred and tested successfully
on a real robot. Future steps plan to continue the learning process on-
line while on the real robot while performing the mentioned task. We
demonstrate its feasibility with real experiments on the underwater
robot ICTINEU Autonomous Underwater Vehicle (AUV).

1 INTRODUCTION
Reinforcement Learning (RL) is a widely used methodology in robot
learning, see [23]. In RL, an agent tries to maximize a scalar evalua-
tion obtained as a result of its interaction with the environment. The
goal of a RL system is to find an optimal policy to map the state of the
environment to an action which in turn will maximize the accumu-
lated future rewards. The agent interacts with a new, undiscovered
environment selecting actions for each state, receiving a numerical
reward for every decision. Obtained rewards are used to teach the
agent so the robot learns which action to take at each state, achieving
an optimal or sub-optimal policy (state-action mapping).

The dominant approach over the last decade has been to apply re-
inforcement learning using the value function approach. Although
value function methodologies have worked well in many applica-
tions, they have several limitations. The considerable amount of com-
putational requirements that increase time consumption and the lack
of generalization among continuous variables represent the two main
disadvantages of ”value” RL algorithms. Over the past few years,
studies have shown that approximating a policy can be easier than
working with value functions, and better results can be obtained ([24]
[2]). As presented in [1], it is intuitively simpler to determine how to
act instead of value of acting. So, rather than approximating a value
function, new methodologies approximate a policy using an indepen-
dent function approximator with its own parameters, trying to max-
imize the future expected reward. Only a few but promising prac-
tical applications of policy gradient algorithms have appeared, this
paper emphasizes the work presented in [5], where an autonomous
helicopter learns to fly using an off-line model-based policy search
method. Also important is the work presented in [21] where a simple
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“biologically motivated” policy gradient method is used to teach a
robot in a weightlifting task. More recent is the work done in [10]
where a simplified policy gradient algorithm is implemented to op-
timize the gait of Sony’s AIBO quadrupedal robot. More recently,
the work presented in [18] gives an overview on learning with policy
gradient methods for robotics while presenting the results obtained
in the application of hitting a baseball with an anthropomorphic arm.

All these recent applications share a common drawback, gradient
estimators used in these algorithms may have a large variance (see
[13] and [11]) what means that policy gradient methods learn much
more slower than RL algorithms using a value function (see [24]) and
they can converge to local optima of the expected reward (see [15]),
making them less suitable for on-line learning in real applications. In
order to decrease convergence times and avoid local optima, newest
applications combine policy gradient algorithms with other method-
ologies, it is worth to mention the work done in [25] and [14], where
a biped robot is trained to walk by means of a “hybrid” RL algorithm
that combines policy search with value function methods.

A good proposal for speeding up gradient methods may be offer-
ing the agent an initial policy. Example policies can direct the learner
to explore the promising part of search space which contains the
goal states, specially important when dealing with large state-spaces
whose exploration may be infeasible. Also, local maxima dead ends
can be avoided with example techniques [12]. The idea of providing
high-level information and then use machine learning to improve the
policy has been successfully used in [22] where a mobile robot learns
to perform a corridor following task with the supply of example tra-
jectories. In [4] the agent learns a reward function from demonstra-
tion and a task model by attempting to perform the task. Finally, the
work done in [9] concerning an outdoor mobile robot that learns to
avoid collisions by observing a human driver operating the vehicle.

This paper proposes a reinforcement learning application where
the underwater vehicle ICTINEUAUV carries out a visual based
cable tracking task using a direct gradient algorithm to represent
the policy. The function approximator used to represent the policy
a barycentric interpolator function. An initial example policy is first
computed by means of computer simulation where a hydrodynamic
model of the vehicle simulates the cable following task. Once the
simulated results are accurate enough, in a second phase, the policy is
transferred to the vehicle and executed in a real test. A third step will
be mentioned as a future work, where the learning procedure con-
tinues on-line while the robot performs the task, with the objective
of improving the initial example policy as a result of the interaction
with the real environment. This paper is structured as follows. In Sec-
tion 2 the learning procedure and the policy gradient algorithm are
detailed. Section 3 describes all the elements that affect our problem:
the underwater robot ICTINEUAUV , the mathematical model of



the vehicle used in the simulation, the vision system and the con-
troller. Details and results of the simulation process and the real test
are given in Section 4 and finally, conclusions and the future work to
be done are included in Section 5.

2 LEARNING PROCEDURES
The introduction of prior knowledge in a gradient descent methodol-
ogy can dramatically decrease the convergence time of the algorithm.
This advantage is even more important when dealing with real sys-
tems, where timing is a key factor. Such learning systems can divide
its procedure into two phases or steps as shown in Fig. 1. In the first
phase of learning (see Fig. 1(a)) the learner interacts with a simulated
environment; during this phase, the agent extracts all useful informa-
tion from simulation. In a second step, once it is considered that the
agent has enough knowledge to build a “secure” policy, it takes con-
trol of the real robot and the learning process continues in the real
world, see Fig. 1(b).

The proposal presented here takes advantage of learning by simu-
lation as an initial startup for the learner. The objective is to transfer
an initial policy, learned in a simulated environment, to a real robot
and test the behavior of the learned policy in real conditions. First, the
learning task will be performed in simulation with the aid of the hy-
drodynamic model of the robot. Once the learning process is consid-
ered to be finished, the policy will be transferred to ICTINEUAUV

in order to test it in the real world. In a future task, the learning pro-
cedure will switch to a third phase, continuing to improve the policy
while in real conditions. The Baxter and Bartlett approach [6] is the
gradient descent method selected to carry out the simulated learning
corresponding to phase one. Next subsection gives details about the
algorithm.

2.1 The gradient descent algorithm
The Baxter and Bartlett’s algorithm is a policy search methodology
with the aim of obtaining a parameterized policy that converges to an
optimum by computing approximations of the gradient of the aver-
aged reward from a single path of a controlled partially observable
Markov decision process (POMDP). The convergence of the method
is proven with probability 1, and one of the most attractive features
is that it can be implemented on-line. In a previous work presented in
[7], the same algorithm was used in a simulation task achieving good
results. The algorithm’s procedure is summarized in Algorithm 1.
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Figure 1. Learning phases.

The algorithm works as follows: having initialized the parameters
vector θ0, the initial state i0 and the eligibility trace z0 = 0, the learn-
ing procedure will be iterated T times. At every iteration, the param-
eters’ eligibility zt will be updated according to the policy gradient
approximation. The discount factor β ∈ [0, 1) increases or decreases
the agent’s memory of past actions. The immediate reward received
r(it+1), and the learning rate α allows us to finally compute the new
vector of parameters θt+1. The current policy is directly modified
by the new parameters becoming a new policy to be followed by the
next iteration, getting closer to a final policy that represents a correct
solution of the problem.

Algorithm 1: Baxter and Bartlett’s OLPOMDP algorithm
1. Initialize:

T > 0
Initial parameter values θ0 ∈ RK

Initial state i0
2. Set z0 = 0 (z0 ∈ RK )
3. for t = 0 to T do:

(a) Observe state xt

(b) Generate control action ut according to current policy µ(θ, xt)
(c) Observe the reward obtained r(it+1)

(d) Set zt+1 = βzt +
∇µut (θ,xt)

µut (θ,xt)

(e) Set θt+1 = θt + αtr(it+1)zt+1
4. end

The algorithm is designed to work on-line. Our policy will be ap-
proximated with a particular class of functions called the barycentric
interpolators (see [16]), which use an interpolation process based on
a finite set of discrete points conforming a mesh. This mesh does not
need to be regular, but the method outlined here assumes that the state
space is divided into a set of rectangular boxes as shown in Fig. 2.
The key here is that any particular point is enclosed in a rectangu-
lar box that can be defined by 2N nodes in our N-dimensional state
space.

Figure 2. Example of a 2-dimension rectangular mesh.

Let Σδ = {ξi}i be a set of points distributed in the mesh at some
resolution δ on the state of dimension d. For any state x inside some
rectangular box (ξi, ..., ξn), x is the barycenter of the {ξi}i=1..n

inside this box with positive coefficients p(x|ξi) of sum 1 called the
barycentric coordinates (see Fig. 3) where:

x =
∑

i=1..n

p(x|ξi)ξi (1)
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Figure 3. Graphic representation of the barycentric coordinates given a
state x in a 2 dimensional mesh case.

We can set V δ(ξi) as the value of the function at the points pre-
viously described ξi. As seen in Eq. 2, V δ(x) is the barycentric in-
terpolator of state x which is the barycenter of the points {ξi}i=1..n

for some box (ξi, ..., ξn) with barycentric coordinates p(x|ξi), see
Fig. 4.

V δ(x) =
∑

i=1..n

p(x|ξi)V
δ(ξi) (2)

As stated before, our policy will be directly approximated using
a barycentric interpolator function whose values V δ(ξi) represent
the policy parameters. Therefore, given and input state xt the pol-
icy will compute a continuous control action V δ(x)t = ut driving
the learner to a new state with its associated reward. Once the action
has been selected, the parameter update process starts. The barycen-
tric interpolator parameters are updated following expression 3.(d) of
Algorithm 1:

z(ξi)t+1 = βz(ξi)t +
∇µut(V

δ(ξi), xt)

µut(V
δ(ξi), xt)

(3)

z(ξi)t+1 = βz(ξi)t + p(x|ξi)e (4)

the error at the output is given by:

e = V δ(x)desired − V δ(x) (5)

z(ξi)t+1 = βz(ξi)t + p(x|ξi)(V
δ(x)desired − V δ(x)) (6)1( )V δ ξ 2( )V δ ξ4( )V δ ξ

3( )V δ ξ
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=
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Figure 4. Calculation of the function approximator output given a

particular state x.

Finally, the old parameters are updated following expression 3.(e)
of Algorithm 1:

V δ(ξi)t+1 = V δ(ξi)t + αr(it+1)zt+1 (7)

The vector V δ(ξi) represents the policy parameters to be up-
dated, r(it+1) is the reward given to the learner at every time step,
zt+1describes the estimated gradients mentioned before and, at last,
we have α as the learning rate of the algorithm.

3 CASE TO STUDY: CABLE TRACKING

This section is going to describe the different elements that take place
into our problem: first, a brief description of the underwater robot
ICTINEUAUV and its model used in simulation is given. The sec-
tion will also present the problem of underwater cable tracking and,
finally, a description of the barycentric interpolator function designed
for both, the simulation and the real phases is detailed.

3.1 ICTINEUAUV

The underwater vehicle ICTINEUAUV was originally designed to
compete in the SAUC-E competition that took place in London dur-
ing the summer of 2006 [19]. Since then, the robot has been used as a
research platform for different underwater inspection projects which
include dams, harbors, shallow waters and cable/pipeline inspection.

The main design principle of ICTINEUAUV was to adopt a
cheap structure simple to maintain and upgrade. For these reasons,
the robot has been designed as an open frame vehicle. With a weight
of 52 Kg, the robot has a complete sensor suite including an imaging
sonar, a DVL, a compass, a pressure gauge, a temperature sensor, a
DGPS unit and two cameras: a color one facing forward direction
and a B/W camera with downward orientation. Hardware and bat-
teries are enclosed into two cylindrical hulls designed to withstand
pressures of 11 atmospheres. The weight is mainly located at the
bottom of the vehicle, ensuring the stability in both pitch and roll
degrees of freedom. Its five thrusters will allow ICTINEUAUV to
be operated in the remaining degrees of freedom (surge, sway, heave
and yaw) achieving maximum speeds of 3 knots (see Fig. 5).

Figure 5. The autonomous underwater vehicle ICTINEUAUV .



3.2 AUV mathematical model
As described in the literature [8], the non-linear hydrodynamic equa-
tion of motion of an underwater vehicle with 6 degrees of freedom
(DOF), in the body fixed frame, can be conveniently expressed as:

τB + G(η)−D(υB)υB + τp = (MB
RB + MA)υ̇B + ...

... + (CB
RB(υB) + CA(υB))υB (8)

Where:

• υB is the velocity vector.
• υ̇B is the acceleration vector.
• η = (φθψ)T are the Roll, Pith and Yaw angles.
• τB are the forces and moments exerted by thrusters.
• G(η) are the gravity and buoyancy forces.
• D(υB) are the linear and quadratic damping matrixes.
• D(τP are the not modeled perturbations.
• MB

RB is the inertia matrix.
• MB

A is the added mass matrix.
• CB

RB is the rigid body Coriolis and centripetal matrix.
• CB

A is the hydrodynamic Coriolis and centripetal matrix.

Identification of the complete set of coefficients and hydrody-
namic derivatives which appear in Eq. 8 is a rather complex task.
The identification problem can be much more easily approached if
the following simplifications are applied:

• D(υB) consists of the lineal and quadratic damping forces and
can be assumed diagonal.

• MB
RB and MB

A can be assumed diagonal (this is true for
ICTINEUAUV due to its squared shape, see Subsection 3.1).

• The body frame is located at the gravity center.

Moreover, if the robot is actuated in a single DOF during the iden-
tification experiments, further simplifications can be carried out. For
instance, let’s consider the dynamic equation for the surge (move-
ment along X axis) DOF:

τu + (sin(θ)B − sin(θ)W )− (Xu + Xu|u||u|)u + ...
... + τP = (m−Xu̇)u̇ + [(m− Zẇ)wq]− [(m− Yv̇)vr]

(9)

which follows the standard notation proposed in [8]. If we excite
the robot in a single DOF, surge in this case, in such a way that:

• u 6= 0 and v = w = p = q = r = 0
• θ = φ = 0

uncoupled experiment can be achieved, Eq. 9 can be rewritten as:

u̇ = − Xu

(m−Xu̇)
u− Xu|u||u|

(m−Xu̇)
u +

τu

(m−Xu̇)
+

τP

(m−Xu̇)
(10)

The same procedure can be applied to each degree of freedom so
we can consider a generic uncoupled equation of motion for the i-
degree of freedom as:

ẋi = αixi + βixi|xi|+ γiτi + δi (11)

where the state variable x represents speed. Hence, things become
easier if we use Eq. 11 for the identification. Once the whole model
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Figure 6. Coordinates of the target cable with respect ICTINEUAUV .

has been uncoupled, its parameters have been identified by means
of parameter identification methods [20]. The resultant model has
been reduced to emulate a robot with only three degrees of free-
dom (DOF), X movement, Y movement and rotation respect Z axis.
The identified parameters can be see in Table 1. Note that related to
the squared shape of the vehicle, the robot behavior has been con-
sidered equal in X and Y ; also, the β term corresponding to the
quadratic damping has been neglected due to the low speeds achieved
by ICTINEUAUV during the tests.

Table 1. Parameter identification results.

Parameters

DOF α β γ δ

Surge (X movement) 0.3222 0 0.0184 0.0012
Sway (Y movement) 0.3222 0 0.0184 0.0012
Yaw (Z rotation) 1.2426 0 0.5173 -0.050

3.3 The Cable Tracking Vision System

The downward-looking B/W camera installed on ICTINEUAUV

will be used for the vision algorithm to track the cable. It provides a
large underwater field of view (about 57◦ in width by 43◦ in height).
This kind of sensor will not provide us with absolute localization
information but will give us relative data about position and orien-
tation of the cable respect to our vehicle: if we are too close/far or
if we should move to the left/right in order to center the object in
our image. The vision-based algorithm used to locate the cable was
first proposed in [17] and later improved in [3]. It exploits the fact
that artificial objects present in natural environments usually have
distinguishing features; in the case of the cable, given its rigidity and
shape, strong alignments can be expected near its sides. The algo-
rithm will evaluate the polar coordinates ρ (orthogonal distance from
the origin of the camera coordinate frame) and Θ (angle between ρ
and X axis of the camera coordinate frame) of the straight line cor-
responding to the detected cable in the image plane (see Fig. 6).



Once the cable has been located and the polar coordinates of the
corresponding line obtained, as the cable is not a thin line but a large
rectangle, we will also compute the cartesian coordinates (xg ,yg)
(see Fig. 6) of the cable’s centroid with respect to the image plane
by means of (12).

ρ = xcos(Θ) + ysin(Θ) (12)

where x and y correspond to the position of any point of the line
in the image plane. The computed parameters xg and Θ together
with its derivatives δxg

δt
and δΘ

δt
will conform the input state to our

policy function represented by the barycentric interpolator. For the
simulated phase, a downward-looking camera model has been used
to emulate the vision system of the vehicle.

3.4 Design of the barycentric interpolator to
represent the policy

As stated in previous section, the observed state is a 4 dimension vec-
tor x = (xg, Θ,

δxg

δt
, δΘ

δt
). The x component of the cable centroid in

the image plane xg is ranged from [0, 1.078] meters, Θ = [−π
2

, π
2
]

radians, the derivative of xg , δxg

δt
= [−0.5, 0.5]m/s and finally,

δΘ
δt

= [−1, 1]rad/s . From these observations, the robot will take
decisions concerning two degrees of freedom, Y movement (Sway)
and Z axis rotation (Yaw), therefore the continuous action vector is
defined as u = (usway, uyaw) where usway = [−1, 1]m/s and
uyaw = [−1, 1]rad/s. The X movement of the vehicle (surge) will
not be learned. A simple controller has been implemented to control
the X DOF; only if the cable is centered in the image plane the robot
will move forward (usurge = 0.3m/s), otherwise usurge = 0.

In order to decrease the function approximator complexity reduc-
ing the number of grid points, the main policy has been split into two
subpolicies, each one represented by a 2-dimensional barycentric in-
terpolator. It can be easily noticed that usway actions will be mainly
affected by the position and the velocity of xg along the X axis of
the image plane. In the same way, uyaw actions will strongly depend
on the angle Θ of the cable in the image plane. Although learning
uncoupled policies will probably reduce the final performance of the
learner, it has been a good initial startup to focus the problem. In
Fig. 7, the observed substate (xg,

δxg

δt
) is the input of subpolicy a),

being the output usway . Subpolicy b) has (Θ, δΘ
δt

) as input variables
and uyaw as output. The density factor δ of the barycentric mesh for
both grids has been experimentally set to 10 equal divisions for each
axis, therefore the mesh has 100 cells.

4 RESULTS
4.1 First phase: Simulated Learning
The model of the underwater robot ICTINEUAUV navigates a two
dimensional world at 1 meter height above the seafloor. The simu-
lated cable is placed at the bottom in a fixed circular position. The
learner has been trained in an episodic task. An episode ends either
every 15 seconds (150 iterations) or when the robot misses the cable
in the image plane, whatever comes first. When the episode ends, the
robot position is reset to a random position and orientation around
the cable’s location, assuring any location of the cable within the im-
age plane at the beginning of each episode. According to the values
of the state parameters θ and xg , a scalar immediate reward is given
each iteration step. Three values were used: -10, -1 and 0. In order
to maintain the cable centered in the image plane, the non negative
reward r = 0 is given when the position along the X axis of the

gxt∂
∂, , ,gg xx x t tθθ

∂ ∂=  ∂ ∂ 
1( )swayV δ ξ 2( )swayV δ ξ4( )swayV δ ξ

3( )swayV δ ξ

1..4( ) ( | )· ( )sway sway i sway iiu V x p x Vδ δξ ξ
=

= = ∑
x

1( )yawV δ ξ 2( )yawV δ ξ4( )yawV δ ξ

3( )yawV δ ξ

1..4( ) ( | )· ( )yaw yaw i yaw iiu V x p x Vδ δξ ξ
=

= = ∑
x

a) Sway policy
b) Yaw policy θtθ∂

∂

( ),sway yawu u u=

gx

Figure 7. Representation of both subpolicies. a) represents the sway
policy. b) represents the yaw policy.

centroid (xg) is around the center of the image (xg ± 0.15) and the
angle θ is close to 90◦ (90◦ ± 15◦). A r = −1 is given in any other
location within the image plane. The reward value of -10 is given
when the vehicles misses the target and the episode ends.

The number of episodes to be done has been set to 2000. For ev-
ery episode, the total amount of reward perceived is calculated. Fig. 8
represents the performance of the computed policy as a function of
the number of episodes when trained using Baxter and Bartlett’s al-
gorithm. The experiment has been repeated in 100 independent runs.
The results here presented are the mean over these runs. The learning
rate was set to α = 0.001 and the discount factor β = 0.98. In Fig. 9
and Fig. 10 we can observe a state/action mapping of a trained agent
in both, yaw and sway degrees of freedom. Figure 11 represents the
trajectory once the training period finishes.

4.2 Second phase: Learned policy transfer. Real
test

Once the learning process is considered to be finished, the resultant
policy is transferred to ICTINEUAUV and its performance tested
in a real environment. The experimental setup can be seen in Fig. 12
where the detected cable is shown while the vehicle performs a test
inside the pool. Fig. 13 represents real measured trajectories of the
θ angle while the vehicle performs different attempts to center the
cable in the image.

5 CONCLUSIONS AND FUTURE WORKS
This paper proposes a field application of a high-level Reinforce-
ment Learning (RL) control system for solving the action selection
problem of an autonomous robot in cable tracking task. The learn-
ing system is characterized by using a direct policy search algorithm
for robot control based on Baxter and Bartlett’s direct-gradient algo-
rithm. The policy is represented by 2 barycentric interpolators with



2 input state variables, each one controlling one degree of freedom.
In order to speed up the process, the learning phase has been car-
ried out in a simulated environment and then transferred and tested
successfully on the real robot ICTINEUAUV .

Results of this work show a good performance of the learned pol-
icy. Although it is not a hard task to learn in simulation, continuing
the learning autonomously in a real situation represents a challenge
due to the nature of underwater environments. We believe that direct
policy search reinforcement learning methods can be a good solu-
tion to solve decision making problems in such a hostile situation
as underwater missions. Future steps are focused on continue to im-
prove the policy by means of on-line learning in real environment
and comparing the results obtained with human pilots tracking tra-
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Figure 11. Behavior of a trained robot controller, results of the simulated
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Figure 12. ICTINEUAUV in the test pool. Small bottom-right image:
Detected cable.
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jectories and other controllers.
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