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A B S T R A C T

"Gradient-based reinforcement learning techniques for
underwater robotics behavior learning."

A considerable interest has arisen around Autonomous Un-
derwater Vehicle (AUV) applications. AUVs are very useful
because of their size and their independence from human
operators. However, comparison with humans in terms of
efficiency and flexibility is often unequal. The development
of autonomous control systems able to deal with such is-
sues becomes a priority. The use of AUVs for covering large
unknown dynamic underwater areas is a very complex
problem, mainly when the AUV is required to react in real
time to unpredictable changes in the environment.

This thesis is concerned with the field of AUVs and the
problem of action-decision. The methodology chosen to
solve this problem is Reinforcement Learning (RL). The
work presented here focuses on the study and develop-
ment of RL-based behaviors and their application to AUVs
in real robotic tasks. The principal contribution of this the-
sis is the application of different RL techniques for auton-
omy improvement of an AUV, with the final purpose of
demonstrating the feasibility of learning algorithms to help
AUVs perform autonomous tasks. In RL, the robot tries to
maximize a scalar evaluation obtained as a result of its
interaction with the environment with the aim of finding
an optimal policy to map the state of the environment to
an action which in turn will maximize the accumulated
future rewards. Thus, this dissertation is based on the prin-
cipals of RL theory, surveying the two main classes of RL
algorithms: Value Function (VF)-based methods and Policy
Gradient (PG)-based techniques. A particular class of al-
gorithms, Actor-Critic methods, born of the combination
of PG algorithms with VF methods, is used for the final
experimental results of this thesis: a real underwater task in
which the underwater robot Ictineu AUV learns to perform
an autonomous cable tracking task.
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R E S U M

"Tècniques d’aprenentatge per reforç basades en gradi-
ents per a l’aprenentatge de comportaments en robots
submarins autònoms."

Darrerament, l’interès pel desenvolupament d’aplicacions
amb robots submarins autònoms (AUV) ha crescut de
forma considerable. Els AUVs són atractius gràcies al seu
tamany i el fet que no necessiten un operador humà per
pilotar-los. Tot i això, és impossible comparar, en termes
d’eficiència i flexibilitat, l’habilitat d’un pilot humà amb
les escasses capacitats operatives que ofereixen els AUVs
actuals. L’utilització de AUVs per cobrir grans àrees implica
resoldre problemes complexos, especialment si es desitja
que el nostre robot reaccioni en temps real a canvis sobtats
en les condicions de treball. Per aquestes raons, el desen-
volupament de sistemes de control autònom amb l’objectiu
de millorar aquestes capacitats ha esdevingut una prioritat.

Aquesta tesi tracta sobre el problema de la presa de de-
cisions utilizant AUVs. El treball presentat es centra en
l’estudi, disseny i aplicació de comportaments per a AUVs
utilitzant tècniques d’aprenentatge per reforç (RL). La con-
tribució principal d’aquesta tesi consisteix en l’aplicació de
diverses tècniques de RL per tal de millorar l’autonomia
dels robots submarins, amb l’objectiu final de demostrar
la viabilitat d’aquests algoritmes per aprendre tasques sub-
marines autònomes en temps real. En RL, el robot intenta
maximitzar un reforç escalar obtingut com a conseqüència
de la seva interacció amb l’entorn. L’objectiu és trobar una
política òptima que relaciona tots els estats possibles amb
les accions a executar per a cada estat que maximitzen la
suma de reforços totals. Així, aquesta tesi investiga princi-
palment dues tipologies d’algoritmes basats en RL: mètodes
basats en funcions de valor (VF) i mètodes basats en el gradi-
ent (PG). Els resultats experimentals finals mostren el robot
submarí Ictineu en una tasca autònoma real de seguiment
de cables submarins. Per portar-la a terme, s’ha dissenyat
un algoritme anomenat mètode d’Actor i Crític (AC), fruit
de la fusió de mètodes VF amb tècniques de PG.
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R E S U M E N

"Técnicas de aprendizaje por refuerzo basadas en gradi-
entes para el aprendizaje de comportamientos en robots
submarinos autónomos."

Últimamente, el interés por el desarrollo de aplicaciones con
robots submarinos autónomos (AUV) ha crecido de forma
considerable. Los AUVs son atractivos por su tamaño y
porque no necesitan un operador humano para su pilotaje.
Aún y así, es imposible comparar, en términos de eficiencia
y flexibilidad, la habilidad del pilotaje humano con las es-
casas capacidades operativas que ofrecen los AUVs actuales.
El uso de AUVs para cubrir grandes áreas implica resolver
problemas complejos, especialmente si se desea que el robot
reaccione en tiempo real a cambios bruscos que pudieran
producirse en las condiciones de trabajo. Por estas razones,
el desarrollo de sistemas de control autónomo para mejorar
estas capacidades se ha convertido en una prioridad.

Esta tesis trata sobre el problema de la toma de decisiones
utilizando AUVs. El trabajo presentado se centra en el es-
tudio, diseño y aplicación de comportamientos para AUVs
utilizando técnicas de aprendizaje por refuerzo (RL). La
contribución principal de la tesis consiste en la aplicación
de varias técnicas que permiten mejorar la autonomía de
los robots submarinos, con el objetivo final de demostrar
la viabilidad de estos algoritmos para aprender tareas sub-
marinas de forma autónoma en tiempo real. En RL, el robot
intenta maximizar un refuerzo escalar obtenido como con-
secuencia de su interacción con el entorno. El objetivo es
encontrar una política óptima que relaciona todos los esta-
dos posibles con las acciones a ejecutar para cada estado
que maximizan la suma de refuerzos totales. Así, esta tesis
investiga principalmente dos tipologias de algoritmos basa-
dos en RL: métodos basados en funciones de valor (VF)
y métodos basados en el gradiente (PG). Los resultados
experimentales finales muestran al robot submarino Ictineu
en una tarea autónoma real de seguimiento de cables sub-
marinos. Para llevarla a cabo, se ha diseñado un algoritmo
llamado método del Actor y el Crítico (AC), fruto de la
fusión de métodos VF con técnicas de PG.
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [70]
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1
I N T R O D U C T I O N

Our society is constantly evolving. A lot of things have
changed since 1917 when the writer Karel Čapek first used
the word robot to refer to a machine with a humanoid as-
pect. Even the well-known ideas of Asimov about robots
and his three famous laws of robotics seem to be far be-
hind us today. Nowadays, different kinds of machines are
present in our life, helping us in our most common daily
activities. Some scientists understand robotics as an ap-
plied science born of the “marriage” between informatics
science and tool-machines so now the tool is able to pro-
cess and manage information rationally and automatically
without human help, replacing the worker, without getting
tired, without strikes and being 100% operational. However,
reality suggests that we are still very far from such a tech-
nology. Although being trivial for humans, the capability
to perceive the environment (sensing) and making decisions
(acting) is a very difficult task for a computer. Thus, the
field of Artificial Intelligence (AI) is needed for autonomous
robots to solve such problems.

This thesis is concerned with the field of autonomous
robots and the problem of action-decision. The method-
ology chosen is Reinforcement Learning (RL). In RL, an
agent tries to maximize a scalar evaluation obtained as
a result of its interaction with the environment with the
aim of finding an optimal policy to map the state of the
environment to an action which in turn will maximize ac-
cumulated future rewards. Thus, this dissertation is based
on the principals of RL. It surveys two main classes of RL
algorithms: Value Function (VF)-based methods and Policy
Gradient (PG)-based techniques. A particular class of algo-
rithms, Actor-Critic (AC) methods, born of the combination
of PG algorithms with VF methods, is used for obtaining
the final experimental results of this thesis: a real underwa-
ter task where the underwater robot Ictineu AUV learns to
perform an autonomous cable tracking task.

This introduction continues with the main aspects which
have conditioned this thesis. First, some background on
the motivations and applicability will be provided, then a
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2 introduction

description of the objectives of this thesis and the outline of
this document are given.

1.1 motivation

The research presented in this thesis was carried out in the
Underwater Robotics Laboratory of the Computer Vision
and Robotics Group (VICOROB) of the University of Girona.
This group has been doing research in underwater robotics
since 1992, supported by several National and European
programs. A main contribution over the past few years
has been the development of three Unmanned Underwater
Vehicles (UUVs). The first prototype, called GARBI, was
developed in collaboration with the Polytechnic University
of Catalonia. This underwater robot was initially conceived
as a Remote Operated Vehicle (ROV), but after successive
modifications over the years, the robot evolved into its
final configuration as an Autonomous Underwater Vehicle
(AUV) in 2005. The second prototype, URIS (1999), was fully
developed at the University of Girona and was designed as
an small AUV, smaller and cheaper than its older brother.
This underwater robot was constructed with the objective of
having a quick experimental benchmark for testing sensors
and software under laboratory conditions. The most recent
robot is the Ictineu (2006), an AUV which brings together
the broad sensorial capabilities of the GARBI and the small
form factor of the URIS, which make this robot a perfect
research platform for testing in both laboratory and real
application environments.

The research efforts in the Underwater Robotics Labora-
tory focused on the technical development of autonomous
underwater robots. The design of an autonomous robot
requires a solution for the action-decision problem. The
control system is the part of the robot in charge of mak-
ing decisions. An autonomous robot is designed to accom-
plish a particular mission, and the control architecture must
achieve this mission by generating the proper actions. The
design of the autonomous robot URIS and previously, the
adaptation of GARBI from a ROV to an AUV, led to the de-
velopment of a new control architecture, the O2CA2 control
architecture [34]. The main feature of this architecture was
the breaking down of the whole robot control system into
a set of objects. The parallel execution of these objects al-
lowed real-time execution. In addition, some of these objects



1.1 motivation 3

represented primitive behaviors of the robot. Also, as the
complexity of the autonomous missions increased, advances
were made towards the development of mission control sys-
tems [36]. Additional work on the identification of dynamic
models of underwater robots [129] made the development
of various research tools such as the Neptune simulator
possible [128]. With respect to the application domain, pre-
liminary work was carried out on the use of ROV technology
for inspection of hydroelectric dams using image mosaics
[21]. Later, the topic was readdressed using AUVs in the
context of a research project supported by the Spanish com-
mission Ministerio de Ciencia y Tecnologia (MCYT), made in
collaboration with the University of the Balearic Islands and
the Polytechnic University of Catalonia. The objective of the
project was to improve AUVs performance for their use in in-
dustrial applications such as the inspection of hydroelectric
dams, harbors and underwater cables and pipelines.

According to the achievements in those lines of research
and application domains, the abilities of the robots have
increased as well as their mission requirements. Follow-
ing the work done with the O2CA2 control architecture,
the study and development of better behaviors which con-
stitute the action-decision methodology were the next ob-
jective. The investigation of some implementation aspects
which influence the overall performance of the robot was
carried out. In this way, the use of learning algorithms to
improve the efficiency of the behaviors was explored. A
learning framework, called Reinforcement Learning (RL),
was studied. The research carried out on the RL principal
succeeded with the development of the Semi-Online Neural
Q-Learning (SONQL) method [34], an RL-based algorithm
embedded inside a behavior-based control architecture for
an AUV able to perform simple tasks such as learning how
to follow an artificial target and exhibit real-time learning
capabilities.

The work done during the elaboration of this thesis con-
tinues along the line started with the RL-based behaviors
principal. This dissertation goes a step further and surveys
novel RL-based methodologies which may offer important
advantages in real robotic applications, paying special at-
tention to the sort of algorithm able to perform on-line
learning.



4 introduction

1.2 goal of the thesis

As discussed in the motivation section, the goal of this
thesis is the study and development of RL-based behav-
iors and their application to AUVs in real robotic tasks.
Over the past few years, considerable interest has arisen
around AUV applications. Industries around the world call
for technology applied to several underwater scenarios,
such as environmental monitoring, oceanographic research
or maintenance/monitoring of underwater structures. AUVs
are attractive for utilization in these areas because of their
size and their non-reliance on human operators. However,
comparison with humans in terms of efficiency and flex-
ibility is often unequal. The development of autonomous
control systems able to deal with such issues becomes a
priority. The use of AUVs for covering large unknown dy-
namic underwater areas is a very complex problem, mainly
when the AUV is required to react in real time to unpre-
dictable changes in the environment. This thesis applies
different RL techniques for autonomy improvement of an
AUV. The purpose is to demonstrate the feasibility of learn-
ing algorithms to help AUVs perform autonomous tasks.
In particular, this thesis concentrates on one of the fastest
maturing, and probably most immediately significant, com-
mercial application: Cable and Pipeline Tracking. In this way,
this thesis presents Policy Gradient (PG) techniques, a par-
ticular class of RL method, as an alternative to classic Value
Function (VF) algorithms. Most of the methods proposed in
the RL community to date are not applicable to robotics as
they do not scale beyond robots with more than one to three
degrees of freedom. PG methods are a notable exception to
this statement. The advantages of PG methods for robotics
are numerous. Among the most important are that they
have good generalization capabilities which allow them to
deal with big state-spaces, that their policy representations
can be chosen so that it is meaningful to the task and can
incorporate previous domain knowledge and that often
fewer parameters are needed in the learning process than in
VF-based approaches. Also, there are various algorithms for
PG estimation in the literature which have a rather strong
theoretical underpinning. In addition, PG methods can be
used model-free and therefore can also be applied to robot
problems without an in-depth understanding of the prob-
lem or mechanics of the robot [115]. The final experiments
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demonstrate that the best results are obtained when com-
bining both VF and PG techniques into a particular class of
algorithms called Actor-Critic (AC) methods.

Low convergence speed is an ever present problem in
real robotics. To solve this issue, this thesis combines RL
methods with computer simulation techniques to speeding
up the learning process. Parallel to the theoretical analy-
sis, successful applications of these methods are presented
together with experimental results of the final proposed
algorithms.

1.2.1 Objectives

After reviewing the research motivations and describing
the problem, the goal of this thesis is stated here as:

"The study and utilization of policy gradient-based re-
inforcement learning algorithms for the development of
RL-based behaviors and its application to autonomous
underwater robotics tasks."

The objectives of this dissertation have been oriented to
continue along the research path of RL-based behaviors
opened in this lab. Also, this thesis wants to give an insight
into the need of the underwater technology community for
solutions to increasing underwater vehicles’ autonomy. This
thesis reviews the main aspects of RL and analyzes the main
features of VF-based algorithms and PG-based methods. It
discusses them as different but complementary approaches
to solving the Reinforcement Learning Problem (RLP) in
real robotic tasks. Also, this dissertation extends the field
of robot learning, which is one of the most active areas
in robotics. The goal of this thesis can be divided into the
following more specific objectives:

the reinforcement learning problem. A general
overview of RL with the main objective of under-
standing its related theory, main features and field
of applications in robotics. Also, particular classes
of RL algorithms have been studied, some based on
VF and others on PG techniques. These methodolo-
gies offer different solutions to solve the RLP, offering
advantages and drawbacks. All of them have been
analyzed, either from a theoretical or a practical point
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of view, giving examples of successful applications to
real robotics. The objective of the first chapters is to
build a theoretical basis to propose the most suitable
class of RL algorithm for solving the RLP described in
Chapter 5.

model identification. Although the theoretical side
of the selected RL algorithms give them good conver-
gence properties, once the learning is moved to a real
environment and asked for on-line capabilities the
whole process becomes slow. Due to the objective of
achieving faster convergence, this dissertation intro-
duces methods to speeding up the learning process.
Among the different methods surveyed, simulated
learning techniques were chosen for the final experi-
ments of this thesis. In order to learn an initial policy
with the aid of a simulator, an accurate model of the
robot had to be approximated. Thus, the second objec-
tive of this dissertation is the study and utilization of a
specially designed Least Squares (LS) model identifica-
tion algorithm to obtain a reliable model of the Ictineu
AUV, the robot used in the final tests and described in
Chapter 5.

experimental setup and results. Evaluation of the
various algorithms surveyed, either in simulation or in
real experiments. The objective is to compare methods
and extract the best features of each. For this purpose,
common benchmarks were used for the simulated
tests while the robot Ictineu AUV was being used for
the real experiments. The final part of this thesis de-
scribes the experiments carried out with the various
algorithms. They lead to the final learning method-
ology that solves the final experimental task: a real
autonomous underwater cable tracking robot.

1.3 outline of the thesis

The contents of this thesis can be divided into three main
parts. The first part overviews the field of RL and details
the most representative methods used to solve RL problems,
either from the theoretical or the practical point of view
(Chapter 2), paying special attention to their application
to real robotic tasks and the issues related to them: gen-
eralization problems and convergence speeds. The most
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suitable gradient techniques were implemented inside an
underwater robot control architecture (Chapter 3). The sec-
ond part of this thesis prepares the whole setup for the
final experiments. First, a mathematical model of the robot
used for the tests, Ictineu AUV, is presented by means of
a specially designed least squares identification method.
The proposed LS algorithm itself represents another con-
tribution of this thesis (Chapter 4). This model allowed us
to compute policies by simulation and transfer them to
the real robot to continue the learning on-line, greatly in-
creasing convergence speeds. The underwater robot Ictineu
AUV and the Computer Vision and Robotics Group facility
CIRS where all the tests were performed is also described
(Chapter 5). Finally, the third and last part of this document
encloses the experimental results obtained (Chapter 6) and
summarizes the contributions and further work (Chapter 7).
A brief description of each chapter is presented next.

chapter 2 State Of The Art. This chapter reviews the field
of RL. Once the main aspects are described, the best
known solutions to solving the RLP are presented,
with special interest on those able to deal with real
robotics. Among these are two kinds of algorithms,
VF and PG algorithms, which are analyzed and com-
pared, detailing the main advantages and drawbacks
of each one. Finally, the combination of both methods,
AC algorithms, demonstrate the best performance for
solving real robotics tasks. Practical applications of
the theoretical algorithms are discussed at the end of
this chapter.

chapter 3 Policy Gradient Methods for Robot Control. This
chapter analyzes issues related with the application of
the RL techniques described in the previous chapter to
real robotic tasks. A brief discussion of the evolution
of behavior-based control architectures for real robots
is given at the beginning of the chapter. The gener-
alization problem, which highly affects real robotics,
is described next. The most common approaches to
confront this problem and its application to robotics
tasks are overviewed. Two algorithms have been cho-
sen to obtain the final results of this thesis: Baxter and
Bartlett’s PG algorithm and Peters’ NAC. This chapter
describes the adaptations needed for the experiments
of this thesis. Also, at the end of the chapter, various
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techniques to speeding up the learning process are
briefly discussed.

chapter 4 Model Identification for Underwater Vehicles. This
chapter describes the identification procedure used
to model the underwater robot Ictineu AUV. For this
purpose, the dynamics equations of motion of an un-
derwater vehicle are accurately described. After that,
several common assumptions are given. These allow
us to adapt the general equation to our particular
robot and, therefore, simplify the problem. Finally, an
LS identification method is proposed and applied to
identify the vehicle’s parameters. Some results regard-
ing the performance of the identified model are given
at the end of this chapter.

chapter 5 Experimental Setup. The purpose of this chap-
ter is to report the main characteristics of the differ-
ent elements used to build the experimental setup.
First, the most notable features of the Ictineu AUV are
given. These include the design principles, the actu-
ators and the on-board sensors. An insight into the
control architecture of the robot is given next. Also,
the problem of underwater pipeline and cable tracking
is detailed. Various common approaches to perform-
ing this task are discussed and, among them, the one
selected to carry out the experiments of this thesis,
a vision based system developed by scientists at the
University of Balearic Islands, is described. The algo-
rithm used to estimate the position and orientation of
the cable within the image plane is presented. Finally,
the Computer Vision and Robotics Group facility CIRS
where all the tests were performed is also described
at the end of this chapter.

chapter 6 Results. This chapter presents the experimen-
tal results of this thesis. The results are organized in a
series of sections which show the experiments carried
out with the various algorithms proposed. Both well
known RL benchmarks and specific underwater tasks
are described. The final experiments proposal pre-
sented in this thesis aims to reduce convergence times
of an actor-critic algorithm combining it with one of
the speeding up techniques discussed in Chapter 3.
The idea is to build an initial policy quickly using a
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computer simulator which contains an approximate
model of the environment. In a second step, the policy
is transferred to the Ictineu AUV robot to continue the
learning on-line.

chapter 7 Conclusion. This chapter concludes the thesis
by summarizing all the work done, pointing out con-
tributions and future work. It also comments on the
research evolution and the publications accomplished
during this doctoral study.





2
S TAT E O F T H E A RT

A commonly used methodology in robot learning is Re-
inforcement Learning (RL) [152]. In RL, an agent tries to
maximize a scalar evaluation (reward or punishment) ob-
tained as a result of its interaction with the environment.
This chapter reviews the field of RL. Once the main as-
pects are described, representative solutions to solving the
RLP are presented, with special interest on those able to
deal with real-world robots. Two kind of algorithms, Value
Function (VF) algorithms and Policy Gradient (PG) algo-
rithms, are analyzed and compared. The main advantages
and drawbacks of each approach are described. Finally,
a particular combination of both methods which exploits
the advantages of VF and PG, called Actor-Critic (AC) al-
gorithms, demonstrate the best performance for solving
real robotic tasks. Practical applications of all theoretical
algorithms are discussed at the end of this chapter, with
conclusions and ideas extracted from them in order to de-
sign learning methodologies for underwater robots that
represent the main contribution of this dissertation.

2.1 the reinforcement learning problem

The goal of an RL system is to find an optimal policy to
map the state of the environment to an action which in
turn will maximize the accumulated future rewards. The
robot is not told what to do, but instead must discover
actions which yield the most reward. Therefore, this class
of learning is suitable for online robot learning. The agent
interacts with a new undiscovered environment selecting
the actions computed as the best for each state and receiving
a numerical reward for every decision. These rewards will
be “rich” for good actions and “poor” for bad actions. The
rewards are used to teach the agent and in the end the robot
learns which action it must take at each state, achieving an
optimal or sub-optimal policy (state-action mapping).

We find different elements when working with RL algo-
rithms. The first is the agent or learner which interacts with
the environment. The environment includes everything that

11
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is outside the agent. If we describe the interaction process
step by step, the agent first observes the state of the en-
vironment and, as a result, the agent generates an action
and the environment responds to it with a new state and
a reward. The reward is a scalar value generated by a rein-
forcement function which evaluates the action taken related
to the current state. The agent-environment relationship
can be seen in Figure 1. Observing the diagram, the inter-
action sequence can be described: for each iteration step
t, the agent observes the state st and receives a reward rt.
According to these inputs and the RL policy followed at that
moment, the agent generates an action at. Consequently,
the environment reacts to this action changing to a new
state st+1 and giving a new reward rt+1. A sequence of
states, actions and reward is shown in Figure 2. The most
important features of the agent and environment are listed
as follows:

agent :

• Performs learning and decides on actions.

• Input: the state st and reward rt (numerical value).

• Output: an action at.

• Goal: to maximize the future rewards
∑∞
i=t+1 ri.

environment :

• Everything outside the agent.

• Reacts to actions by transferring to a new state.

• Contains the reward function which generates the
rewards.

As stated before, the agent interacts with the environment
in order to find correct actions. The action applied depends
on the current state so, at the end of the learning process,
the agent has a mapping function which relates every state
with the best action taken. To get the best actions at every
state, two common processes in RL are used: exploitation
and exploration. Exploitation means that the agent always
selects what is thought to be the best action at every current
state. However, exploration is sometimes required to inves-
tigate the effectiveness of actions that have not been tried
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Agent
(policy)

Environment
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reward
rt

state
st

actionat
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Figure 1: Diagram of the interaction Agent vs. Environment.t. . . st a rt+1 st +1 t +1a rt +2 st +2 t +2a rt +3 st +3 . . .t +3a
Figure 2: Schematic sequence of states, actions and rewards.

at the current state. Once the learning period is over, the
agent does not select the action that maximizes the immedi-
ate reward but the one that maximizes the sum of future
rewards.

If we take a deeper look, beyond the environment and the
agent, four main sub-elements of a reinforcement learning
system can be identified: a policy function, a reinforcement
function, a value function and a model of the environment.
These functions define the RLP.

policy function. This function defines the action to be
taken by the agent at a particular state. The policy
function represents a mapping between states and
actions. In general, policies may be stochastic, deter-
ministic or random. Stochastic policies are represented
by a ∼ π(a|s), where the probability of choosing ac-
tion a from state s is contained. Deterministic policies
a = π(s), also know as greedy policies, contain the
best mapping known by the agent, that is, the actions
supposed to best solve the RLP. A greedy action is an
action taken from a greedy policy. Finally, a policy
can be random, in which case the action will be cho-
sen randomly. An ε− greedy policy selects random
actions with a probability ε and greedy actions with
a probability (1 - ε). The policy that gets maximum
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accumulated rewards is called optimal policy and is
represented as π∗.

reward function. This function defines the goal in a
reinforcement learning problem. It is located in the
environment and, roughly speaking, maps each per-
ceived state of the environment to a single number
called a reward. The main objective of an RL agent is
to maximize the total reward it receives in the long
run. The reinforcement function gives an immediate
evaluation to the agent. High immediate rewards are
not the objective of an RL agent but only the total
amount of rewards perceived at the end.

value function. As stated before, the reinforcement
function indicates what is considered “good” in an
immediate sense. The value function defines what
will be good in the long run starting from a particular
state. In other words, the value of a state is the total
amount of estimated reward that the agent is going
to receive following a particular policy starting from
the current state. There are two kinds of value func-
tions. The first is State-Value function Vπ(s), which
contains the sum of expected rewards starting from
state s and following a particular policy π. The second
is the Action-Value function Qπ(s,a), which contains
the sum of rewards in the long run starting in state
s, taking action a and then following policy π. The
action-value function Qπ(s,a) will be equal to the
state-value function Vπ(s) for all actions considered
greedy with respect to π. Once the agent reaches the
optimal value functions, we can obtain the optimal
policy from it.

dynamics function. Also known as the model of the
environment. This describes the behavior of the envi-
ronment and, given a state and an action, the model
of the environment generates the next state and the
next reward. This function is usually stochastic and
unknown, but the state transitions caused by the dy-
namics are contained in some way in the value func-
tions.

Most RL algorithms use these functions to solve the RLP.
As will be shown in the next sections, the learning process
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can be performed either over the value function, the state
Vπ(s) or the action value function Qπ(s,a), or over the
policy π itself. These algorithms propose a learning update
rule to modify the value or the policy function parameters
in order to maximize the received rewards. If the algorithm
converges after some iterations, an optimal policy π∗ can
be extracted and the RLP is solved.

2.2 finite markov decision processes in rl

In RL, the agent makes its decision according to the envi-
ronment’s information. This information is presented as the
environment’s state and reward. In this thesis, by the state
we mean whatever information is available to the agent.
This section discusses what is required of the state signal
and what kind of information we should and should not
expect it to provide. If the information contained in the
state is sufficient for the agent to solve the RLP, it means
that the state summarizes all relevant information. In this
case, the state will be called complete and the process is said
to have accomplished the Markov Property. An environment
that has the Markov property contains in its state all rel-
evant information to predict the next state. Completeness
entails that knowledge of past states, measurements or con-
trols carry no additional information to help us predict the
future more accurately. At the same time, future rewards
do not depend on past states and actions. This property is
sometimes referred to as the independence of path property
because all that matters is in the current state signal; its
meaning is independent of the path taken that led up to
it. The response at time t + 1 to an action taken at time
t for a non-Markovian system is shown in Equation 2.1.
For this case, the response depends on everything that
has happened earlier. Hence, the conditional probability of
achieving the next state st+1 and obtaining the reward rt+1
when taking action at and knowing previous states and
actions is defined as

Pr{st+1 = s
′, rt+1 = r ′|st,at, rt, st−1,at−1, ..., s0,a0} (2.1)

for all s ′, r and all possible values of the past events rep-
resented by: st,at, rt, ..., r1, s0,a0. On the other hand,if an
environment accomplishes the Markov property, the envi-
ronment’s new state and reward, st+1 and rt+1, will depend



16 state of the art

only on the state/action representation at time t. This state-
ment can be defined mathematically as

Pr{st+1 = s
′, rt+1 = r ′|st,at} (2.2)

for all s ′, r, st and at. A state signal is considered to have
the Markov property if, and only if, Equation 2.1 is equal
to Equation 2.2 for all states and actions. If an environment
accomplishes the Markov property, its one step dynamics
allows us to predict the next state and the next reward
given the current state and action. The Markov property is
important in RL because the decisions taken are assumed
to be functions only of the current state. Hence, although
the state at each time step may not fully satisfy the Markov
property, it will be approximated as a Markov state.

An RLP which accomplishes the Markov property is called
a Markov Decision Process (MDP). Moreover, if the state and
action spaces are finite, the environment is considered
a Finite Markov Decision Process (FMDP). For a particular
FMDP, the stochastic dynamics of the environment can be
expressed by a transition probability function Pass ′ . This func-
tion represents the probability of reaching state s ′ from
state s if action a is taken as

Pass ′ = Pr{st+1 = s
′|st = s,at = a}. (2.3)

In the same way, the expected value of the next reward Rass ′
can be obtained. Given any current state s and action a,
together with any state s ′, we have

Rass ′ = E{rt+1|st = s,at = a, st+1 = s ′}. (2.4)

Both Pass ′ and Rass ′ represent the most important concepts for
defining the dynamics of an FMDP. Most RL techniques are
based on FMDPs causing finite state and action spaces. The
RLP analyzed in this thesis assumes that the environment is
an FMDP. Considering only Markov environments is a risky
assumption. The non-Markov nature of an environment
can manifest itself in many ways, and the algorithm can
fail to converge if the environment does not accomplish
all its properties [142]. Following this path, the most di-
rect extension of FMDPs that hides a part of the state to
the agent is known as Hidden Markov Models (HMMs).
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The underlying environment continues to accomplish the
Markov property but the information extracted does not
seem Markovian to the agent. The analogy of HMMs for con-
trol problems are the Partially Observable Finite Markov
Decision Processs (POFMDPs) [98]. The algorithms studied in
this dissertation are based on POFMDPs because, in practice,
it is impossible to get a complete state for any realistic robot
system.

2.3 value functions

Most RL algorithms are based on estimating a value func-
tion VF. The VF, located in the agent, is related to the MDP
dynamics. For a particular learned policy π, the state-value
function Vπ or the action-value function Qπ can be ex-
pressed in terms of Pass ′ and Rass ′ and, as will be shown, the
optimal VF (V∗ or Q∗) can also be determined. Once this
function is obtained, the optimal policy π∗ can be extracted
from it. Before reaching these expressions, a new function
has to be defined. As stated in Section 2.1, the goal of RL is
to maximize the sum of future rewards. A new function Rt
is used in the FMDP framework to express this sum as

Rt = rt+1 + rt+2 + rt+3 + ... + rT . (2.5)

This sum finishes at time T , when the task that RL is try-
ing to solve finishes. The tasks, having a finite number of
steps, are called episodic tasks. However, RL is also suitable
for solving tasks which do not finish at a certain number
of time steps. For example, in a robotic task, the agent may
be continually activated. In this case, the tasks are called
continuous tasks and can run to infinite. To avoid an infinite
sum of rewards, the goal of RL is reformulated to the maxi-
mization of the discounted sum of future rewards. The future
rewards are corrected by a discount factor γ as

Rt = rt+1 + γrt+2 + γ
2rt+3 + ... =

∞∑
k=0

γkrt+k+1. (2.6)

By setting the discount factor between 0 6 γ 6 1, the
infinite sum of rewards does not achieve infinite values and,
therefore, the RLP can be solved. In addition, the discount
factor allows the selection of the number of future rewards
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to be maximized. For γ = 0 only the immediate reward
is maximized. For γ = 1 the maximization will take into
account the infinite sum of rewards. Finally, for 0 < γ < 1
only a reduced set of future rewards will be maximized.

The two VFs, Vπ and Qπ, can be expressed in terms of the
expected future reward Rt. In the case of the state VF, the
value of a state s under a policy π, denoted Vπ(s), is the
expected discounted sum of rewards when starting in s and
following π thereafter. For the action VF, denoted Qπ(s,a),
the value of taking action a in state s under policy π is the
expected discounted sum of rewards when starting in s,
applying action a and following π thereafter. Equations 2.7
and 2.8 formally define these two functions as

Vπ(s) = Eπ{Rt|st = s}

= Eπ
{∑∞

k=0 γ
krt+k+1|st = s

} (2.7)

and

Qπ(s,a) = Eπ{Rt|st = s,at = a}
= Eπ

{∑∞
k=0 γ

krt+k+1|st = s,at = a
}

.
(2.8)

These equations define the VFs obtained when following a
particular policy π. To solve the RLP, the optimal policy π∗,
which maximizes the discounted sum of future rewards,
has to be found. As the VFs indicate, the expected sum
of future rewards for each state or state/action pair, an
optimal VF will contain the maximum values. Therefore,
from all the policies π, the one having a VF (Vπ or Qπ)
with maximum values in all the states or state/action pairs
will be an optimal policy π∗. It is possible to have several
policies (π∗1,π

∗
2, ...) which fulfill this requirement, but only

one optimal VF can be found (V∗ or Q∗), i. e.,

V∗(s) = max
π
Vπ(s) (2.9)

and

Q∗(s,a) = max
π
Qπ(s,a). (2.10)

In order to find these optimal VFs, the Bellman equation
[24] can be employed. This equation relates the value of a
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particular state or state/action pair with the value of the
next state or state/action pair. To relate the two environment
states, the dynamics of the FMDP (Pass ′ and Rass ′) is used. The
Bellman optimality equations for the state and action VFs are
given as

V∗(s) = max
a

∑
s ′

Pass ′[R
a
ss ′ + γV

∗(s ′)], (2.11)

and

Q∗(s,a) =
∑
s ′

Pass ′[R
a
ss ′ + γmax

a ′
Q∗(s ′,a ′)]. (2.12)

The Bellman optimality equations offer a solution to the
RLP by finding the optimal VFs V∗ and Q∗. Although this
solution only works for very small systems and not at all
for most continuous systems if the dynamics of the environ-
ment is known, a system of equations with N equations and
N unknowns can be written using Equation 2.11, N being
the number of states. This nonlinear system can be solved
resulting in the V∗ function. Similarly, the Q∗ function can
be found.

Once V∗ or Q∗ is known, the optimal policy can be easily
extracted. For each state s, any action a which causes the
environment to achieve a state s ′ with maximum state value
with respect to the other achievable states can be considered
as an optimal action. The set of all the states with their
corresponding optimal actions constitutes an optimal policy
π∗. It is important to note that to find each optimal action,
it is only necessary to compare the state value of the next
achievable states. This is due to the fact that the state-value
function V∗ already contains the expected discounted sum
of rewards for these states. In the case where Q∗ is known,
the extraction of the optimal policy π∗ is even easier. For
each state s, the optimal action will be the action a, which
has a maximum Q∗(s,a) value, i. e.,

π∗(s) = arg max
a∈A(s)

Q∗(s,a). (2.13)

This section has formulated the RLP using a FMDP model.
A definition of optimal VFs and optimal policies has been
given and the solution to the RLP when the dynamics of
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the environment is known has been detailed but this rarely
happens in real robotics. Even if the model of a real environ-
ment is accurate enough, the computational power needed
to deal with huge continuous space states and achieve good
solutions in real tasks is too high and often unaffordable.
Hence, real RLPs lead us to settle for approximations. The
following section will describe different methodologies for
finding good solutions to the RLP in real robotic scenarios.

2.4 solution methods for the rlp

There are three fundamental methodologies to solve the RLP
formulated as an FMDP. This section summarizes the main
features of: Dynamic Programming (DP), Monte Carlo (MC)
methods and TD learning. Each class has its strengths and
weaknesses, which will be discussed in the following.

dynamic programming. This methodology is able to
compute the optimal policy π∗ given a perfect model
of the environment dynamics as an FMDP (Pass ′ and
Rass ′). DP algorithms act iteratively to solve the Bellman
optimality equations. DP algorithms are able to learn
online, that is, while the agent is interacting with the
environment in a step-by-step sense. At each iteration,
they update the value of the current state based on the
values of all possible successor states. The knowledge
of the dynamics is used to predict the probability of
the next state to occur. As the learning is performed
online, the agent is able to learn the optimal policy
while it is interacting with the environment. The gen-
eral update equation for the state VF is given by

Vk+1(s) =
∑
a

π(a|s)
∑
s ′

Pass ′[R
a
ss ′ +γVk(s

′)]. (2.14)

In this equation, the state VF at iteration k+ 1 is up-
dated with the state VF at iteration k. Most DP algo-
rithms compute the VFs for a given policy. Once this
VF is obtained, they improve the policy based on it.
Iteratively, DP algorithms are able to find the optimal
policy which solves the RLP. The algorithm replaces
the old value of s with a new value obtained from
the successor states of s and the immediate reward
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expected from all one-step transitions. Hence, at each
iteration step, a full backup of all state values is per-
formed. The computational expenses of this process
are prohibitive and, together with the perfect model
requirements, represent the main drawback of DP in
real robotic problems.

monte carlo methods. MC do not need a model of
the environment. Instead, they use the experience
with the environment, sequences of states, actions
and rewards, to learn the VFs. MC algorithms interact
with the environment following a particular policy π.
When the episode finishes, they update the value of
all the visited states based on the rewards received. By
repeating the learning over several episodes, the VF
for a particular policy can be found. MC methods are
incremental in an episode-by-episode sense, but not in
a step-by-step sense, restricting them from some par-
ticular online applications. Equation 2.15 shows the
general update rule to estimate the state-value func-
tion. At the end of an episode, the current prediction
of the state-value Vπk (s) is modified according to the
sum of rewards Rt received along the whole episode,
not the immediate reward expected as DP algorithms
do. There is also a learning rate α which averages the
values obtained in different episodes. Hence, we have

Vπk+1(st) = V
π
k (st) +α[Rt − V

π
k (st)]. (2.15)

After the evaluation of a policy, MC methods improve
this policy based on the VF learnt. By repeating the
evaluation and improving phases, an optimal policy
can be achieved. The main advantage of MC methods
over DP algorithms is that they do not need a model
of the environment. As a drawback, MC methods are
not suitable for most continuing tasks, as they can not
update the VF until a terminal state is found.

temporal difference learning. The advantages of
the previous methods can be found in TD algorithms.
Like DP, TD learning is able to update value estimates
at every iteration step based in part on other estimates,
without waiting for the final outcome (they bootstrap).
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Also, similar to MC methods, they do not need the
dynamics of the environment but the experience with
the environment itself. The general update rule for
the state-value function can be seen in Equation 2.16.
Similar to MC methods, the updating of the state value
Vπk+1(st) is accomplished by comparing its current
value with the discounted sum of future rewards.
However, in TD algorithms this sum is estimated with
the immediate reward rt+1 plus the discounted value
of the next state. Also, the update rule does not require
the dynamics transition probabilities which allow TD
algorithms to learn in an unknown environment.

Vπk+1(st) = V
π
k (st) +α[rt+1 + γV

π
k (st+1) −V

π
k (st)].
(2.16)

Although TD methods are mathematically complex
to analyze, they do not require the dynamics to be
known and are fully incremental, allowing them to be
performed on-line. These reasons make TD methods
the most suitable algorithms for solving the RLP for
most robotic tasks, like the ones that will be solved in
this dissertation. Therefore, the algorithms studied in
this thesis will be based on TD methods.

When dealing with real-world robots, the dominant ap-
proach has been to apply different TD-based algorithms to
learn a particular VF and then extract the optimal policy
from it. These algorithms are called Value Function algo-
rithms. The next section describes the mathematical foun-
dation of this methodology, always focusing on those algo-
rithms able to deal with real robotic tasks.

2.5 value function algorithms

Value Function (VF) methodologies find the optimal policy
by first searching for the optimal VF and then deducing the
optimal policy from the optimal VF. Figure 3 represents a
block diagram which is usually followed by RL algorithms
based on the VF approach. At every iteration step, the al-
gorithm proposes a learning update rule to modify the
current VF Vπ(s) or Qπ(s,a) and then extracts a policy π to
be followed by the agent. If the RL algorithm converges after
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some iterations, the VF changes to the optimal VF, V∗(s) or
Q∗(s,a), from which the optimal policy π∗ can be extracted.
The solution of the RLP is accomplished by following the
state-action mapping contained in the optimal policy π∗.

VF-based methodologies under Markov environments
have been a platform for various RL algorithms. The next
sections introduce the most representative algorithms using
Vπ(s) and Qπ(s,a) respectively.

2.5.1 Temporal Difference (TD)(λ)

The TD(λ) [152] is a common example of a state VF approach.
The λ term refers to the use of a new concept, the eligibil-
ity trace. Eligibility traces are a basic tool used by several
reinforcement learning algorithms that have been widely
used to handle delayed rewards. They can be defined as
a bridge between TD methods and MC techniques. As de-
scribed in Section 2.4, TD methods do not need a model of
the environment and update VF using immediate rewards
rt+1 and value estimates. Similarly, MC methods do not
need a model of the environment but they must wait till
the episode ends and the total reward Rt is perceived to up-
date the state values. Eligibility trace works as a decay factor
which introduces a memory into our reward assignment as
a temporary record of the occurrence of a particular event
stored in a new variable associated to each state called et(s)
and defined as

et(s) =

{
γλ et−1(s) if s 6= st,
γλ et−1(s) + 1 if s = st.

(2.17)

Here, γ is a discount factor and λ is the decay factor defined
at the beginning of this section. The range of the decay
factor λ is 0 6 λ 6 1. If λ = 0 all the credit given to previous
states is zero except for the last one corresponding to st
and the TD(λ) reduces to a simple TD method, called TD(0).
If λ = 1 previous visits have full credit. Their value only
decreases due to the discount factor γ and our algorithm
behaves as an MC method. The TD(λ) algorithm update rule
is detailed in Algorithm 1.

At any time, eligibility traces record which states have
recently been visited, where "recently" is defined in terms of
γλ. Traces indicate the degree to which each state is eligible
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Figure 3: Typical phase diagram of a VF-based RL algorithm,

where the VF is updated according to the algorithm.
Once the optimal VF is found, the optimal state-action
policy π∗ is extracted.
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Algorithm 1: TD(λ) algorithm.
Initialize V(s) arbitrarily and e(s) = 0 for all s ∈ S
Repeat until V(s) is optimal:

a) st ← the current state
b) at ← action given by π for st
c) Take action at, observe reward rt+1 and new state st+1
d) δ = rt+1 + γV(st+1) − V(st)
e) e(st) = e(st) + 1
For all s:

f) V(st) = V(st) +αδe(st)
g) e(st) = γλe(st)

h) st = st+1

for undergoing learning changes. Those reinforcing events
are the one-step TD error for the state-value prediction indi-
cated by δ. If we take a look at Equation 2.16 in Section 2.4,
the update rule of a simple TD(0) algorithm renews only the
value of the current state at each iteration, whereas when
introducing an eligibility trace, all the values of recently
visited states are updated. The propagation of delayed re-
wards through recently visited states greatly increases the
convergence of the algorithm, achieving an optimal policy
in fewer iterations. Another on-policy TD control method,
the Sarsa algorithm [152], uses essentially the same TD(0)
method described above, but learns the action-value func-
tion rather than the state-value function. Theorems assuring
the convergence of state values under TD(0) also apply to
this algorithm for action values.

2.5.2 Q-Learning (QL)

The QL algorithm [163] is another TD algorithm. As distin-
guished from the TD(λ) algorithm, QL uses the action-value
function Qπ(s,a) to find an optimal policy π∗. The Qπ(s,a)
function has an advantage over the state-value function
Vπ(s). Once the optimal function Q∗(s,a) has been learnt,
the extraction of an optimal policy π∗ can be directly per-
formed without the requirement of the environment dy-
namics. The optimal policy will be composed of a map
relating each state s with any action a which maximizes the
Q∗(s,a) function.

Another important feature of QL is the off-policy learning
capability. That is, in order to learn the optimal function
Q∗, any policy can be followed. The only condition is that
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all the state/action pairs must be regularly visited and
updated. This feature, together with the simplicity of the
algorithm, makes QL very attractive for a lot of applications.
In real systems, as in robotics, there are many situations in
which not all the actions can be executed. For example, to
maintain the safety of a robot, an action cannot be applied
if there is any risk of colliding with an obstacle. Therefore,
if a supervisor module modifies the actions proposed by
the QL algorithm, the algorithm will still converge to the
optimal policy.

The QL algorithm is described in Algorithm 2. Follow-
ing the definition of the action-value function, the Q∗(s,a)
value is the discounted sum of future rewards when ac-
tion a is executed from state s, and the optimal policy π∗

is followed afterwards. To estimate this sum, QL uses the
received reward rt+1 plus the discounted maximum value
of the future state st+1.

The first step of the algorithm is to initialize the values of
the Q function for all the states s and actions a randomly.
After that, the algorithm starts interacting with the environ-
ment in order to learn the Q∗ function. In each iteration, the
update function needs an initial state st, the executed action
at, the new state st+1 which has been achieved, and the
received reward rt+1. The algorithm updates the value of
Q(st,at), comparing its current value with the sum of rt+1
and the discounted maximum Q value in st+1. The error
is reduced with a learning rate α and added to Q(st,at).
When the algorithm has converged to the optimal Q∗ func-
tion, the learning process can be stopped. The parameters
of the algorithm are the discount factor γ, the learning rate
α and the ε parameter for the random actions.

Algorithm 2: QL algorithm.
Initialize Q(s,a) arbitrarily
Repeat until Q is optimal:

a) st ← the current state
b) choose action amax that maximizes Q(st,a) over all a
c) at ← (ε− greedy) action, carry out action amax in the
world with probability (1− ε) (exploitation), otherwise apply
a random action (exploration)
d) Observe the reward rt+1 and the new state st+1
e) Q(st,at) =
Q(st,at) +α[rt+1 + γmaxat+1Q(st+1,at+1) −Q(st,at)]
f) st ← st+1
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At each iteration, the algorithm perceives the state from
the environment and receives the reward. After updating
the Q value, the algorithm generates the action to be taken.
The Q function is represented as a table with a different
state in each row and a different action in each column. Both
the state space and the action space can contain different
variables with different values. As can be observed, the
algorithm has to store the past state st and the past action
at.

Other algorithms are able to solve the RLP by learning the
policy directly. In such algorithms, the policy is explicitly
represented by its own function approximator, independent
of the VF and is updated according to the gradient of the
expected reward with respect to the policy parameters. This
approach comprises a wide variety of algorithms called
Policy Gradient algorithms. The survey that follows is focused
on PG algorithms that do not require the dynamics to be
known and can be performed on-line.

2.6 policy gradient algorithms

Most of the methods proposed in the reinforcement learning
community are not applicable to high-dimensional systems
as these methods do not scale beyond systems with more
than three or four degrees of freedom and/or cannot deal
with parameterized policies [114]. PG methods are a notable
exception to this statement. Starting with the work in the
early 1990s [25, 55], these methods have been applied to
a variety of robot learning problems ranging from simple
control tasks [26] to complex learning tasks involving many
degrees of freedom [117]. The advantages of PG methods
for robotics are numerous. Among the most important are
that they have good generalization capabilities which al-
low them to deal with big state-spaces, that their policy
representations can be chosen so that it is meaningful to
the task and can incorporate previous domain knowledge
and that often fewer parameters are needed in the learning
process than in VF-based approaches. Also, there is a variety
of different algorithms for PG estimation in the literature
which have a rather strong theoretical underpinning. In
addition, PG methods can be used model-free and therefore
also be applied to robot problems without an in-depth un-
derstanding of the problem or mechanics of the robot [115].
Studies have shown that approximating a policy directly
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Figure 4: Diagram of a PG-based RL algorithm. The policy pa-
rameters are updated according to the gradient of the
current policy. Once the optimal policy parameters are
found, current policy π becomes optimal π∗.
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can be easier than working with VFs [153, 9] and better re-
sults can be obtained. Informally, it is intuitively simpler to
determine how to act instead of value of acting [1]. So, rather
than approximating a VF, new methodologies approximate
a stochastic policy using an independent function approx-
imator with its own parameters, trying to maximize the
future reward expected. In Equation 2.18 we can see that
in the PG approach, the eligibility et(θ) is represented by
the gradient of a given stochastic policy π(at|st, θt) with
respect to the current parameter vector θt as

et(θ) =
d logπ(at|st, θt)

dθt
. (2.18)

In section 2.5.1 it is explained that, in the VF approach, the
eligibility et(s) is bound to the state. It represents a record of
the number of visits of the different states while following
current policy π. In the PG approach, et(θ) is bound to the
policy parameters. It specifies a correlation between the
associated policy parameter θi and the executed action at
while following current policy π. Therefore, while the VF’s
eligibility indicates how much a particular state is eligible for
receiving learning changes, PG’s eligibility indicates how
much a particular parameter of our policy is eligible to be
improved by learning. The final expression for the policy
parameter update is

θt+1 = θt +αrt+1et(θ). (2.19)

Here, α is the learning rate of the algorithm and rt is the
immediate reward perceived. Figure 4 represents the phase-
diagram of PG-based algorithms. At every iteration step,
the algorithm proposes a learning update rule to modify a
parameterized policy function π(a|s, θ). This rule is based
on the policy derivative with respect to the policy parame-
ters and the immediate reward rt+1. Once the PG algorithm
converges, the current policy π becomes the optimal policy
π∗. The solution of the RLP is accomplished by following
optimal policy π∗.

The next sections introduce several PG methods for learn-
ing algorithms. The algorithms presented hereafter detail
the most important methodologies from over the last few
years and constitute the basic foundation of most successful
practical applications which solve the RLP using PG tech-
niques.
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2.6.1 REINFORCE

The first example of an algorithm optimizing the averaged
reward obtained for stochastic policies working with gradi-
ent direction estimates is Williams’ REINFORCE algorithm
[171]. This algorithm learns much more slowly than other
RL algorithms which work with a VF and, maybe for this
reason, has received little attention. However, the ideas and
mathematical concepts presented in REINFORCE were a
basic platform for later algorithms. The algorithm operates
like the basic PG algorithm presented in Section 2.6 by ad-
justing policy parameters to a direction that lies along the
gradient of expected reinforcement rewards following the
expression

∆θt+1 = α(rt+1 − bt+1)et(θ). (2.20)

Here, α is the learning rate of the algorithm and et(θ) =
d logπ(at|st,θt)

dθt
is the eligibility of a particular parameterized

stochastic policy π(at|st, θt). As a novelty, Williams intro-
duces a b term called reward baseline. This term gives the
algorithm a choice to work with immediate (b = 0) or de-
layed (b 6= 0) rewards. As can be seen in Equation 2.21, the
reward baseline includes a discount factor γ (0 6 γ 6 1)
that maintains an adaptive reward of the upcoming rein-
forcement based on past experience, i. e.,

bt+1 = γrt+1 + (1− γ)bt. (2.21)

Several researchers have previously shown that the use of
a reward baseline does not bias the gradient estimate, but
motivation to choose a particular baseline form has mainly
been based on qualitative arguments and empirical success
[148, 170, 41]. The optimal baseline which does not bias the
gradient can only be a single number for all trajectories and
can also depend on the time-step [117]. However, in the PG
theorem it can depend on the current state and, therefore, if
a good parameterization for the baseline is known, e.g., in
a generalized linear form b(xt) = φ(xt)

Tw, this can signifi-
cantly improve the gradient estimation process. However,
the selection of the basis functions φ(xt) can be difficult and
often impractical in practice [114] since they may introduce
more bias. Therefore, some theorems provide guidance in
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choosing a baseline [165, 52, 171, 166, 79]. The expression
that gives us the update rule for every parameter of our
policy is formulated as

θt+1 = θt +α(rt+1 − bt+1)et(θ). (2.22)

As can be easily noticed, the eligibility described in REIN-
FORCE does not accumulate information about past actions,
it just represents the correlation between parameters and
actions taken at any time step t. Kimura and Kobayashi
extended Williams’ algorithm to the infinite horizon and
modified the eligibility to become an eligibility trace [69].
A decay factor λ (0 6 λ 6 1) similar to the one used in
Sutton’s TD(λ) is added into the calculation of the new
eligibility trace zt(θ), i. e.,

zt+1(θ) = λzt(θ) + et(θ). (2.23)

Hence, we obtain

θt+1 = θt +α(rt+1 − bt+1)zt+1(θ). (2.24)

Williams’ original eligibility e(θ) contained information
about actions immediately executed. Kimura and Kobayashi’s
eligibility trace z(θ) acts as a discounted running average
of the eligibility. As we move the decay factor λ close to 1,
the memory of the agent concerning past actions increases.
Adding eligibility traces considerably improves the perfor-
mance of the algorithm but, as a drawback, this gradient
version becomes biased and does not correspond to the
correct gradient unlike [54]. The bias-variance tradeoff in
gradient estimates are a critical factor in PG algorithms and
nowadays it represents a hot topic for most researchers. A
good balance between them directly affects the algorithm’s
performance. The REINFORCE with eligibility traces algo-
rithm is described in Algorithm 3.

The easy structure of these kinds of algorithms, with-
out any computational complexity, and their capability of
mildly adapting to POFMDP, make REINFORCE-based meth-
ods a good startup for designing algorithms for real robot
applications in unknown environments.
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Algorithm 3: REINFORCE with eligibility traces algo-
rithm.

Initialize parameter vector θ0 arbitrarily and set z0(θ) = 0 and
b0 = 0.
Repeat until π(a|s, θ) is optimal:

a) st ← the current state
b) at ← action given by π(at|st, θt)
c) Take action at, observe reward rt+1

Calculate eligibility et(θ) and eligibility trace zt(θ)
d) et(θ) =

d logπ(at|st,θt)
dθt

e) zt+1(θ) = λzt(θ) + et(θ)
Calculate reinforcement baseline and improve policy

f) bt+1 = γrt+1 + (1− γ)bt
g) θt+1 = θt +α(rt+1 − bt+1)zt+1(θ)

2.6.2 Gradient Partially Observable Markov Decision Process
(GPOMDP)

The variance of a gradient estimator remains a significant
practical problem for PG applications. Although the eligibil-
ity traces introduced by Kimura and Kobayashi have proven
effective, discounting rewards introduce the bias-variance
balance problem: variance in the gradient estimates can be
reduced by heavily discounting rewards, but the estimates
will be biased. In the same way, the bias can be reduced
by not discounting so much, but the variance will then be
higher [23]. The GPOMDP algorithm proposed by Baxter and
Bartlett aims to improve the gradient estimation. This algo-
rithm demonstrates that a bad selection of a reinforcement
baseline b only increases the bias of gradient estimates and
does not even improve its variance. In fact, the bias-variance
tradeoff can be controlled by just correctly selecting an ap-
propriate value of the decay factor λ. As λ approaches 1, the
bias of the estimates decreases, but its variance increases.

Let θ represent the parameter vector of an approximate
function π(a|s, θ) that maps a stochastic policy. The gradi-
ent function d logπ(at|st,θt)

dθt
computes approximations based

on a continuous sample path of the Markov chain of the
parameterized POFMDP. The accuracy of the approximation
is controlled by the decay factor λ ∈ [0, 1) of the eligibility
trace z(θ) which increases or decreases the agent’s mem-
ory of past actions as in Kimura’s algorithm. Furthermore,
given a POFMDP and a randomized differentiable policy
π(a|s, θ) for all observed states and actions with initial pa-



2.6 policy gradient algorithms 33

rameter values θ, the update of the eligibility trace z(θ) and
the policy parameter vector θ are completed by

zt+1(θ) = λzt(θ) +
d logπ(at|st, θt)

dθt
, (2.25)

and

θt+1 = θt +αrt+1zt+1(θ). (2.26)

Here, α is the learning rate of the algorithm and r is the
immediate reward received. As the value of λ increases,
the memory of the agent increases, however, variance of
the estimates zt+1(θ) also rises with this parameter. The
GPOMDP algorithm is detailed in Algorithm 4.

Algorithm 4: The GPOMDP algorithm.
Initialize parameter vector θ0 arbitrarily and set z0(θ) = 0.
Repeat until π(a|s, θ) is optimal:

a) st ← the current state
b) at ← action given by π(at|st, θt)
c) Take action at, observe reward rt+1

Calculate eligibility trace zt+1(θ)
d) zt+1(θ) = λzt(θ) +

d logπ(at|st,θt)
dθt

Policy improvement
e) θt+1 = θt +αrt+1zt+1(θ)

The low mathematical complexity shown by this algo-
rithm together with its online feasibility and the improve-
ments in variance vs. bias tradeoff make the GPOMDP ap-
proach a basic algorithm for real applications. At this point,
there is no special mathematical difference between the
GPOMDP and the REINFORCE approach. Since most of the
literature uses the Baxter and Bartlett approach as a basic
PG platform for testing, the GPOMDP algorithm was used in
some real and simulated testing during the final results of
this dissertation.

2.6.3 Compatible Function Approximation

As we have previously shown in Section 2.6.1, the nat-
ural alternative to using approximate VFs is problematic
as these introduce bias in the presence of imperfect basis
functions. However, as demonstrated in [73, 153] the term
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Qπ(x,u) − bπ(x) can be replaced by a compatible function
approximation fπ(s,a). The algorithm proposed in [74, 152]
defines the VF as a linearly parameterized approximation
with its own parameter vector. The main advantage of the
proposed algorithm lies in the fact that, due to the small di-
mension of the parameter vector compared with the space
dimension, it is not necessary to find the exact approxi-
mated VF, but what they named a reduced projection of
the VF. Therefore, for the action-value function approach,
a compatible function approximation is described by a lin-
ear feature-based parameterized approximation without
affecting the unbiasedness of the gradient estimate and
irrespective of the choice of the baseline bπ(s) as

Qπ(s,a) − bπ(s) = fπ(s,a) = φ(s,a)Tw. (2.27)

Here w represents the parameter vector and φ(s,a) is the
features function. If the algorithm includes an eligibility
trace z(wt), the parameter update at any time step t is
performed as

zt+1(w) = λzt(w) +φ(st+1,at+1),
wt+1 = wt +αδtzt+1(w).

(2.28)

The variable α denotes the learning rate while λ is the
decay factor of its eligibility. The calculation of TD-error δt
is defined by

δt+1 = rt+1 +φ(st+1,at+1)Twt −φ(st,at)Twt. (2.29)

Similarly to the TD-error, a particular policy π(s,a, θ) can
be approximated by

π(s,a, θ) = Zθexp(φ(s,a)Twt) (2.30)

where Zθ = Σaexp(φ(s,a)), θ is the parameter vector and
ψ(s,a) is the features function. The policy updates its pa-
rameter vector θ according to the TD-error and the features
function ψ(st+1,at+1) by

θt+1 = θt +βδt+1ψ(st+1,at+1), (2.31)

where β denotes a learning rate. The algorithm procedure
is summarized in Algorithm 5.
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Algorithm 5: Compatible Function Approximation.
Initialize policy π(s,a) and evaluation VF with parameter
vectors θ0 and w0 respectively. Set feature vectors ψ(s,a) and
φ(s,a) for parameterization. Set eligibility trace z0(w) = 0.
Repeat until π(s,a, θ) is optimal:

a) at ← action given by π(st,at, θt)
b) Take action at, observe next state st+1 and reward rt+1
Policy evaluation:
d) δt+1 = rt+1 +φ(st+1,at+1)Twt −φ(st,at)Twt
e) zt+1(w) = λzt(w) +φ(st+1,at+1)
f) wt+1 = wt +αδt+1zt+1(w)

Policy update:
g) θt+1 = θt +βδt+1ψ(st+1,at+1)

2.6.4 Natural Policy Gradients

PG algorithms have often exhibited slow convergence. PG
convergence speed is directly related to the direction of the
gradient, and those found around plateau landscapes of
the expected reward may be small and not point towards
the optimal solution [114]. These poor performance results
made Sham Kakade think whether we were obtaining the
right gradient [66]. The GPOMDP approach described in the
previous section offered the most straightforward approach
of policy improvement, following the gradient in policy
parameter space using the steepest gradient ascent,

θt+1 = θt +α∇η(θ) (2.32)

where∇η(θ) is the gradient of the averaged reward function
of the POFMDP with the parameter vector θ. In [7], Amari
pointed out that the natural PG may be a good alternative
to the PG described above. A natural gradient is the one
that looks for the steepest ascent with respect to the Fisher
information matrix [7] instead of the steepest direction in the
parameter space. The Fisher information is a way of measur-
ing the amount of information that an observable random
variable x carries about an unknown parameter θ upon
which the likelihood function of θ, L(θ) = f(x, θ), depends.
The natural gradient of the averaged reward function ∇̃η(θ)
can be expressed as a function of the Fisher information
matrix F(θ) and the gradient of the averaged reward ∇η(θ)
as

∇̃η(θ) = F−1(θ)∇η(θ). (2.33)
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By inserting a compatible function approximation [114] param-
eterized by the vector w into the PG we obtain

∇̃η(θ) = F−1(θ)G(θ)w. (2.34)

Here the matrix G(θ) is known as the all-action matrix [66].
It has been demonstrated in [114] that it corresponds to
the Fisher information matrix G(θ) = F(θ) so the natural
gradient can be computed as

∇̃η(θ) = F−1(θ)F(θ)w = w. (2.35)

The policy parameter vector update is finally given by

θt+1 = θt +αwt. (2.36)

Here α is the learning rate of the algorithm. The procedures
of a PG algorithm with natural gradient computation is
detailed in Algorithm 6.

Algorithm 6: Natural Gradient algorithm.
Initialize parameter vector θ0 arbitrarily and set z0(θ) = 0 and
b0 = 0.
Repeat until π(s,a, θ) is optimal:

a) st ← the current state
b) at ← action given by π(st,at, θt)
c) Take action at, observe reward rt+1

Calculate the natural gradient of the expected reward η(θ)
d) ∇̃η(θ) = F−1(θ)F(θ)w = wt

Policy improvement
e) θt+1 = θt +αwt

Being easier to estimate than regular PGs, natural gradi-
ents are expected to be more efficient and therefore acceler-
ate the convergence process. Also, a more direct path to the
optimal solution in parameter space increases convergence
speed and avoids premature undesirable convergence.

2.7 value function vs policy gradient

In previous sections we presented the foundation of VF
and PG techniques. Advantages and drawbacks of each one
were also discussed when dealing with real robotic tasks.
This section compares both methodologies directly with the
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aim of finding the most suitable solution for the particular
experimental tasks where RL techniques are applied in this
dissertation.

The dominant approach over the last decade has been
to apply RL using the VF approach. As a result, many RL-
based control systems have been applied to robotics. In
[146], an instance-based learning algorithm was applied
to a real robot in a corridor-following task. For the same
task, in [59] a hierarchical memory-based RL was proposed,
obtaining good results as well. In [35], an underwater robot
learns different behaviors using a modified QL algorithm.
VF methodologies have worked well in many applications,
achieving great success with discrete lookup table param-
eterization but giving few convergence guarantees when
dealing with high dimensional domains due to the lack of
generalization among continuous variables [152].

RL is usually formulated using FMDPs. This formulation
implies a discrete representation of the state and action
spaces. However, in some tasks the states and/or the ac-
tions are continuous variables. A first solution can be to
maintain the same RL algorithms and discretize the con-
tinuous variables. If a coarse discretization is applied, the
number of states and actions will not be too high and the
algorithms will be able to learn. However, in many appli-
cations the discretization must be fine in order to assure a
good performance. In these cases, the number of states will
grow exponentially, making the use of RL impractical. The
reason is the high number of iterations necessary to update
all the states or state/action pairs until an optimal policy is
obtained. This problem is known as the curse of dimension-
ality. In order to solve this problem, most RL applications
require the use of generalizing function approximators such
as ANNs, instance-based methods or decision-trees. In some
cases, QL can fail to converge to a stable policy in the pres-
ence of function approximation, even in MDPs, and it may
be difficult to calculate maxa∈A(s)Q∗(s,a) when dealing
with continuous space-states [104]. Another feature of VF
methods is that these approaches are oriented to finding
deterministic policies. However, stochastic policies can yield
considerably higher expected rewards than deterministic
ones as in the case of POFMDPs, selecting among different
actions with specific probabilities [142]. Furthermore, some
problems may appear when the state-space is not com-
pletely observable, small changes in the estimated value of
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an action may or may not cause it to be selected, resulting
in convergence problems [27].

Rather than approximating a VF, policy search techniques
approximate a policy using an independent function ap-
proximator with its own parameters, trying to maximize
the future reward expected [115]. The advantages of PG
methods over VF-based methods are various. The main
advantage is that using a function approximator to repre-
sent the policy directly solves the generalization problem.
Working this way should represent a decrease in the compu-
tational complexity and, for learning systems which operate
in the physical world, the reduction in time consumption
would be enormous. Furthermore, learning systems should
be designed to explicitly account for the resulting violations
of the Markov property. Studies have shown that stochastic
policy-only methods can obtain better results when work-
ing in POFMDPs than those obtained with deterministic
value-function methods [142]. In [9] a comparison between
a policy-only algorithm [23] and a value QL method [164] is
presented where the QL oscillates between the optimal and a
suboptimal policy while the policy-only method converges
to the optimal policy.

Attempts to apply the PG algorithms to real robotic tasks
have shown slow convergence, in part caused by the small
gradients around plateau landscapes of the expected return
[114]. In order to avoid these situations, studies presented in
[7] pointed that the natural PG may be a good alternative to
the typical PG. Being easier to estimate than regular PGs, they
are expected to be more efficient and therefore accelerate
the convergence process. Natural gradient algorithms have
found a variety of applications over the last few years, as
in [125] with traffic-light system optimization and in [161]
with gait optimization for robot locomotion.

PG applications share a common drawback, gradient esti-
mators used in these algorithms may have a large variance
[88, 74], learning much more slowly than RL algorithms
using a VF (see [153]) and they can converge to local optima
of the expected reward [96], making them less suitable for
on-line learning in real applications. In order to decrease
convergence time and avoid local optima, the newest ap-
plications combine PG search with VF techniques, adding
the best features of both methodologies [20, 74]. These tech-
niques are commonly known as Actor-Critic (AC) methods.
In AC algorithms, the critic component maintains a VF, and
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Figure 5: General diagram of the AC methods.

the actor component maintains a separate parameterized
stochastic policy from which the actions are drawn. The
Actor’s PG gives convergence guarantees while the critic’s
VF reduces variance of the policy update improving the
convergence rate of the algorithm [74]. AC basic procedures
as well as its most representative algorithms are discussed
in the next section.

2.8 actor-critic algorithms

Actor-Critic (AC) methods [172] combine some advantages
of PG algorithms and VF methods. AC methods have two
distinctive parts, the actor and the critic. The actor part
contains the policy to be followed. It observes the state of
the environment and generates an action according to this
policy. On the other hand, the critic observes the evolution
of the states and criticizes the actions made by the actor.
The critic contains a VF which tries to learn according to the
actor policy. A common property of AC methods is the fact
that the learning is always on-policy which means that, at
any time step, the action to be followed is the one indicated
by the actor policy. If the agent does not follow this action,
the algorithm cannot converge to the RLP solution. The critic
will always learn the state-value function for this policy.
Figure 5 shows the general diagram of an AC method.

In AC methods, the critic typically uses the state-value
function Vπ(s). The actor is initialized to a policy which
relates all the states with an action, and the critic learns
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the state-value function of this policy. According to the val-
ues of the visited states, the critic calculates the TD-error
and informs the actor. Finally, the actor modifies its policy
according to this value difference. If the value of two consec-
utive states increases, the probability of taking the applied
action increases. On the contrary, if the value decreases,
the probability of taking that action decreases. AC methods
refine the initial policy until the optimal state-value func-
tion V∗(s) and an optimal policy π∗ are found. The next
sections introduce basic AC techniques for training algo-
rithms. The algorithms presented hereafter detail the most
important methodologies from over the last few years and
constitute the basic foundation of most successful practical
applications which solve the RLP using AC techniques.

2.8.1 Original Actor-Critic

The main idea and foundation of an AC algorithm was
first proposed in [152]. The method follows the structure
previously described in Section 2.8. The critic takes the
form of a TD error, it learns and critiques whatever policy
currently being followed by the actor. Typically, the critic is a
state-value function. After each action selection, it evaluates
the new state to determine whether things have gone better
or worse than expected. That evaluation is the TD error:

δt = rt+1 + γV(st+1) − V(st), (2.37)

where V(s) is the value function implemented by the critic,
rt+1 is the immediate reward perceived and 0 6 γ < 1

is the discount factor. The algorithm’s procedure is quite
simple. The value of the TD error is used to evaluate the
actor’s current policy, i. e., the action at chosen in state st.
If the value of the TD error is positive, it means that, from
state st, taking action at should be enforced in the future.
If the value of the TD error is negative, it means that the
tendency to select at from st should be weakened. Suppose
the actor is implemented by a stochastic policy π(a|s, θ)
parameterized by vector θ. The critic’s error estimate δt
allows the actor to upgrade its policy according to

θt+1 = θt +αδt
d logπ(at|st, θt)

dθt
. (2.38)
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Here α is the learning rate for the actor. The critic updates
its VF according a common TD procedure given by

V(st) = V(st) +βδt. (2.39)

Here the β term corresponds to the learning rate for the
critic. Many of the earliest RL systems that used TD methods
were AC methods [172, 20]. Since then, the attention given
to these methods has increased greatly, mainly because
they have two significant apparent advantages: they require
minimal computation to select actions and they can learn an
explicitly stochastic policy [152]. The algorithm procedure
is summarized in Algorithm 7.

Algorithm 7: Original Actor-Critic (AC).
Initialize policy π(a|s, θ) with initial parameters θ = θ0, its
derivative d logπ(a|s, θ), an arbitrarily VF Vπ(s).
Repeat until π(a|s, θ) is optimal:

a) at ← action given by π(at|st, θt)
c) Take action at, observe next state st+1 and reward rt+1
Critic evaluation and update:

b) δt = rt+1 + γV(st+1) − V(st)
e) V(st) = V(st) +αδt

Actor update:
d) θt+1 = θt +αδt

d logπ(at|st,θt)
dθt

2.8.2 Traced Actor-Critic

In Section 2.6.1, Kimura and Kobayashi introduced the
eligibility trace z(θ) to the PG estimates proposed in REIN-
FORCE. This addition improved the overall performance
of the algorithm considerably. Good results encouraged
them to apply trace calculation to AC methods. Kimura and
Kobayashi’s algorithm [68] proposes a classic AC method
which follows the rules previously presented in Figure 5.
As will be appreciated in the various AC methodologies
discussed in this section, the utilization of the eligibility
trace in AC algorithms can vary from one algorithm to an-
other. Some methods use them as a part of the actor update,
others use them in the critic and others apply them to both
sides. Kimura and Kobayashi’s proposed algorithm utilizes
the eligibility traces for the actor parameter update. The
next lines summarize the whole algorithm’s procedure. The
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actor is implemented by a stochastic policy π(a|s, θ) pa-
rameterized by vector θ. The critic attempts to estimate the
evaluation function for the current policy. The reinforce-
ment used is the value function TD-error δ as shown in the
following equation

δt = rt+1 + γV(st+1) − V(st). (2.40)

Here rt+1 is the immediate reward perceived and 0 6 γ < 1
is the discount factor. On the actor’s side, the eligibility trace
z(θ) is represented as the decayed sum of the eligibility
of a stochastic policy π(a|s, θ) with respect to the current
parameter vector θ as

zt+1(θ) = λzt(θ) +
d logπ(at|st, θt)

dθt
, (2.41)

0 6 λ 6 1 being the decay factor of the eligibility trace.
The critic’s error estimate δ allows the actor to upgrade its
policy according to

θt+1 = θt +αδtzt+1(θ). (2.42)

Here α is the learning rate for the actor. The critic updates
its VF according to a common TD procedure given by

V(st) = V(st) +βδt. (2.43)

Here the β term corresponds to the learning rate for the
critic. The algorithm procedure is summarized in Algo-
rithm 8.

2.8.3 Single Value and Policy Search (VAPS)

The VAPS algorithm [18] allows PG and VF methods to be
combined simultaneously. With the aid of a mixing term β,
the VAPS algorithm computes the differential error value
of a state eva−po(s) as a combination of a PG and a VF as

eva−po(st+1) = (1−β)δva(st+1) +β(b− γrt+1), (2.44)

where δva is the TD-error function for the VF approach
and b− γrt+1 corresponds to the averaged reward of a PG
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Algorithm 8: Traced AC: Eligibility traces for actor
update.

Initialize policy π(a|s, θ) with initial parameters θ = θ0, its
derivative d logπ(a|s, θ), an arbitrarily VF Vπ(s) and set the
eligibility trace z(θ) = 0.
Repeat until π(a|s, θ) is optimal:

a) at ← action given by π(at|st, θt)
c) Take action at, observe next state st+1 and reward rt+1
Critic evaluation and update:

b) δt = rt+1 + γV(st+1) − V(st)
e) V(st) = V(st) +αδt

Actor update:
c) zt+1(θ) = λzt(θ) +

d logπ(at|st,θt)
dθt

d) θt+1 = θt +αδtzt+1(θ)

algorithm which uses a reinforcement baseline b and a
discount factor γ, like the classic PG algorithms detailed in
Section 2.6.1. Adjustments of parameter β between 0 and 1

allows us to go back and forth between both RL methods.
When β = 0, the algorithm totally learns the action-value
function Qπ(s,a) that satisfies the Bellman equation

δva(st+1) = rt+1+γmaxat+1Q
π(st+1,at+1) −Qπ(st,at).

(2.45)

On the other hand, if β = 1, the algorithm directly learns
a policy that will minimize the expected total discounted
reward. An eligibility trace is added for the stochastic policy
update

zt+1(θ) = λzt(θ) +
d logπ(at|st, θt)

dθt
. (2.46)

Here λ is the decay factor of the eligibility trace. The current
differential error value of a state eva−po(s) is finally used
for updating the policy parameters as shown in

∆θt = −α

[
deva−po(st+1)

dθ
+ eva−po(st+1)zt+1(θ)

]
(2.47)

and

θt+1 = θt +∆θt. (2.48)
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The variable α represents a learning rate. The VAPS algo-
rithm procedure is summarized in Algorithm 9. When
β = 0, the algorithm behaves as a pure VF method, the
new algorithm converges but it cannot learn the optimal
policy as the reward function includes the Bellman residual.
When β = 1, the algorithm behaves as a pure PG method. In
this case the algorithm converges to optimality, but slowly
since there is no VF catching the results in the long sequence
of states near the end. By combining the two approaches,
given a particular RLP, this algorithm can offer a much
quicker solution than either of the two alone for the same
problem. It is important to mention that this algorithm is
known to be biased and it does not approximate a true
gradient. Therefore, it has no convergence guarantees.

Algorithm 9: VAPS algorithm.
Initialize policy π, an arbitrarily Qπ(s,a) and set z(θ) = 0.
Repeat until π(a|s, θ) is optimal:

a) at ← action given by π(at|st, θt)
b) Take action at, observe next state st+1 and reward rt+1
Evaluate the policy mixing the action value error and the
expected discounted reward:
c) δva(st+1) = rt+1 + γQπ(st+1,at+1) −Qπ(st,at)
d) δva−po(st+1) = (1−β)δva(st+1) +β(b− γrt+1)

Update eligibility trace and improve policy:
e) zt+1(θ) = λzt(θ) +

d logπ(at|st,θt)
dθt

f) θt+1 = θt −α
[
deva−po(st+1)

dθ + eva−po(st+1)zt+1(θ)
]

2.8.4 The Natural Actor-Critic (NAC)

The NAC algorithm [117] was proposed by Jan Peters and
Stefan Schaal. This algorithm combines AC techniques with
natural gradient computation, detailed in Section 2.6.4, with
the aim of obtaining advantages from both methodologies
and achieve faster convergence. Stochastic natural PGs allow
actor updates while the critic computes the natural gradient
and the VF parameters by linear regression simultaneously.
The actor’s PG gives convergence guarantees under function
approximation and partial observability while the critic’s
VF reduces variance of the estimates update improving
the convergence process. The parameter update procedure
starts on the critic’s side. At any time step t, the features
φ(s) of the designed basis function are updated according
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to the gradients of the actor’s policy parameters θ as shown
in

φ̃(st) = [φ(st+1), 0] (2.49)

and

φ̂(st) = [φ(st),
d logπ(at|st, θt)

dθt
]. (2.50)

These features are then used to update the critic’s param-
eters and find the natural gradient. This algorithm uses a
variation of the Least Squares Temporal Difference (LSTD)(λ)
[29] technique called LSTD-Q(λ). Thus, instead of perform-
ing a gradient descent, the algorithm computes estimates
of matrix A and b and then solves the equation b+Aτ = 0
where the parameter vector τ encloses both, the critic pa-
rameter vector v and the natural gradient vector w:

z(st+1) = λz(st) + φ̂(st),
A(st+1) = A(st) + z(st+1)(φ̂(st) − γφ̃(st)),
b(st+1) = b(st) + z(st+1)rt,
[vt+1,wt+1] = A−1

t+1bt+1.

(2.51)

Here, λ is the decay factor of the critic’s eligibility, rt is
the immediate reward perceived and γ represents the dis-
count factor of the averaged reward. On the actor’s side, the
current policy is updated when the angle between two con-
secutive natural gradients is smaller than a given threshold,
ε 6 (wt+1,wt) 6 ε according to

θt+1 = θt +αwt+1. (2.52)

Here, α is the learning rate of the algorithm. Before starting
a new loop, a forgetting factor β is applied to the critic’s
statistics as shown in

z(st+1) = βz(st+1),
A(st+1) = βA(st+1),
b(st+1) = βb(st+1).

(2.53)
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The algorithm’s procedure is summarized in Algorithm 10.

Algorithm 10: NAC algorithm with LSTD-Q(λ)
Initialize π(a|s, θ) with initial parameters θ = θ0, its derivative
d logπ(at|st,θt)

dθt
and basis function φ(s) for the VF Vπ(s). Draw

initial state s0 and initialize z = A = b = 0.
for t = 0 to n do:

Generate control action at according to current policy πt.
Observe new state st+1 and the reward obtained rt.
Critic Evaluation (LSTD-Q(λ))

Update basis functions
φ̃(st) = [φ(st+1)

T , 0T ]
φ̂(st) = [φ(st)

T , (d logπ(at|st,θt)
dθt

)T ]T

Update sufficient statistics:
z(st+1) = λz(st) + φ̂(st)

A(st+1) = A(st) + z(st+1)(φ̂(st) − γφ̃(st))
T

b(st+1) = b(st) + z(st+1)rt
Update critic parameters:
[vTt+1,wTt+1] = A

−1
t+1bt+1

Actor Update
If 6 (wt+1,wt−τ) 6 ε, then update policy parameters:
θt+1 = θt +αwt+1
Forget sufficient statistics:
z(st+1) = βz(st+1)

A(st+1) = βA(st+1)

b(st+1) = βb(st+1)

end

2.9 applications of policy gradient methods in

robotics

A background of representative RL techniques has been pre-
sented. The survey developed along previous lines started
with general solutions to solve the RLP and, as we con-
tinued, the interest moved to all those RL methodologies
that show interesting advantages when solving real robotic
tasks. Fast convergence, on-line capabilities and the power
to deal with high dimensional domains are some of the
special requirements this survey is looking for. Among all
the algorithms reviewed, PG algorithms offer serious ad-
vantages for real robotic tasks. With the theoretical aspects
clear, this sections aims to discuss practical contributions
obtained in real robot learning using PG methods.
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2.9.1 Robot Weightlifting

If we take a look back in time chronologically, the first
successful attempts to apply gradient techniques to real
robotics were very simple and barely worried about vari-
ance of the estimates, true gradients or convergence issues.
Despite the simplicity of those first applications, they kept
the essence of PG methods. An example is the algorithm de-
signed by Rosenstein and Barto in 2001 [131]. The proposed
method solves the RLP of a weightlifter automata that tries
to perform a payload shift episodic task with a limited max-
imum torque at each of the three robot joints. The policy
is represented by a Proportional Derivative (PD) controller
whose parameters are the policy parameters to be improved
though learning. The update rule is very simple: the algo-
rithm performs a simple random search in the parameter
space by adding a small amount to each parameter at every
iteration step, this amount being normally distributed with
zero mean and a variance equal to a particular search size.
In order to assure exploration, the algorithm updates the
parameters with a fixed probability β or keeps the best ones
found at that moment with probability 1− β. The search
size is also updated every iteration, modified by a decay
factor γ until a minimum is reached. Every time some new
set of parameters is obtained, the PD controller tries them
in an attempt to lift the weight. Such off-line configuration
disconnects the learning algorithm from the real continuous
state space and actions, leaving the real interaction to the PD
controller. Although the results that Rosenstein and Barto
presented were simulated, its weightlifter was able to learn
the task, but the number of trials to achieve a good solution
was very high.

2.9.2 Wheeled Mobile Robot

In looking for procedures to improve performance of RL
methods for real tasks, and even though this one is not a PG
technique, it is worth discussing here the ideas presented
by Smart and Kaelbling around 2002. This algorithm uses
VF techniques to solve an RLP were a wheeled mobile robot
learns a control policy for corridor following and obsta-
cle avoidance tasks [147]. The policy is extracted from a
QL-based method which follows the procedures stated in
Section 2.5.2, with the difference that, instead of applying
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the common tabular representation of Q(s,a), a continuous
function approximator for the Q function is used, allowing
the algorithm to deal with continuous state-space represen-
tation encountered in the real world. The robot has 2 DoF,
rotation around the Z axis and X translation forward and
backward. The translation DoF is not learnt and the goal
of the algorithm is to learn a good policy for controlling
the rotation. The learning is formulated as an episodic task
and the rewards are computed as a function of the steps
taken to reach the goal at every episode. One of the main
contributions of this algorithm is that, in order to overcome
the long convergence times where simple RL techniques
certainly fall, Smart and Kaelbling’s proposal includes prior
knowledge in the learning system. To do so, the learning
procedure is split into two phases. In the first phase of
learning, the robot is controlled by a supplied policy. This
can either be a human directly controlling the robot or some
kind of control code. During this phase, the learning algo-
rithm is passively watching state transitions and updating
the Q function. In the second phase, once the Q function
is complete enough to adequately assume command, the
learned policy takes control of the robot and continues im-
proving itself. Results show that around 30 episodes are
needed to achieve an initial policy in phase one and another
35 episodes more to improve it during phase two.

2.9.3 Gait Optimization for Quadruped

Following the procedures of Rosenstein and Barto, in 2004

Kohl and Stone applied a simple random search PG algo-
rithm to learn a task where the commercial quadrupedal
robot created by Sony, AIBO, tries to find the fastest possi-
ble walking speed [72]. The robot’s policy is defined by a
set of parameters which refer to different aspects of AIBO’s
dynamics: front and rear locus, robot heights, etc. Tuning
them modifies gait behavior and consequently, the walking
speed. Starting from an initial parameter vector, the algo-
rithm generates a set of random policies by adding a small
amount to each parameter. Each of the randomly generated
policies is evaluated and classified by means of an averaging
score and the best adjustment vector from all the policies
is extracted. In the next trial, the policy is modified with
this adjustment and tested. The process is repeated until
convergence. The learning algorithm finds the best policy
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after 3 hours of learning and, like Rosenstein and Barto’s,
the learning process of the algorithm proposed by Kohl
and Stone is quite simple and performed off-line between
each trial, sharing the same slowness found in the previous
method. The results demonstrated that PG techniques were
a promising application to solve the RLP, but improvements
must be made to make it viable for real robotic tasks.

2.9.4 Optimizing Passive Dynamics Walk

Up to this point, the attempts to solve real RL tasks via PG
methods have been rather simple. They were based on tun-
ing an existing controller in open-loop trajectories with its
final performance limited by the initial controller design. In
2004, Tedrake proposes a PG technique to improve a passive
dynamics controller [155]. The resultant algorithm is an AC
based method similar to the one discussed in Section 2.8.2
and is used to solve an RLP were a biped robot learns to
walk from a blank-slate. In order to decrease the number of
DoFs and actuators, the mechanical design of the robot was
based on a passive dynamic walker [94], with a resultant
biped of only 9 DoFs and 4 actuators. The actor is repre-
sented by a deterministic policy which is updated using
discounted eligibilities. The critic provides an estimate of
the VF to the actor by observing the robot’s performance
on a Poincaré map. Both actor and critic are represented
by parameterized linear approximators using non-linear
features. As input, the policy has the actual value of the 9

DoFs (6 internal and 3 for the robot’s orientation). As output,
a 4 dimension vector generates the desired torque for the
actuators. The results show that the robot begins to walk
after only one minute of learning from blank-slate and the
learning converges to the desired trajectory in less than 20

minutes. Also, once the policy is learned, on-line learning
capabilities allow the robot to adapt to small changes in the
terrain easily. As a drawback, 9 DoFs and 4 actuators repre-
sent a high dimensional domain for the policy. Increasing
the number of dimensions to upgrade the performance may
result in scaling problems. As DoFs are added, the reward
assignment to each actuator becomes more difficult, requir-
ing more learning trials to obtain a good estimate of the
correlation.
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2.9.5 Learning Planar Biped Locomotion

Along the same lines as Tedrake’s walker, in 2005 Matsubara
designed an AC algorithm to make a biped robot learn to
walk [91]. The AC method follows the lines described in
Section 2.8.2. The actor’s policy is represented by a Central
Pattern Generator (CPG) composed of a neural oscillator
[92], whose weights are the policy parameters to be learnt
by the actor. The critic is represented by a VF with its own
set of parameters, which estimates the value of the state
as a function of the biped’s maintenance of the upright
position as the first requirement and the forward progress
in a second term. Both policy and value approximators are
modeled using an ANN. Mechanically, Matsubara’s robot
differs from Tedrake’s in the fact that the design of this
biped is not based on passive walker dynamics, thus, an
incorrect gait will cause the robot to fall down and the
learning process finishes without reaching the objective.
Therefore, the aim for a fast convergence algorithm was a
priority. In order to increase convergence speed, Matsubara
proposes to reduce the dimensionality of the continuous
state-space of the problem turning the MDP into a POFMDP.
To do so, the input state to the actor includes only the DoFs
corresponding to the two hip joints and their derivatives
forming a 4 dimensional input vector. Therefore, the rest
of the states and the state of the neural oscillator remain
hidden for the learning algorithm. The reduction of the
number of states make the problem easier to solve but, as
a drawback, a more precise value of the known states is
needed. For this purpose, a good sensory feedback is a
must to achieve satisfactory results. Considering a trial as
one attempt to walk without falling, results show that an
appropriate policy is learned after around 3000 trials have
been completed.

2.9.6 Robot T-ball

Successful applications of PG algorithms for real robotic
tasks point towards a specific class of methods: AC algo-
rithms. AC algorithms join special properties vital for RL
algorithms to succeed in a real task. The actor’s PG gives
convergence guarantees while the critic’s VF reduces vari-
ance of the policy update, improving the convergence rate
of the algorithm. In 2003, Jan Peters and Stefan Schaal de-
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veloped an AC algorithm to solve an RLP where a robotic
arm learns to hit a ball properly so that it flies as far as
possible, like a baseball player would try to do [115]. The
algorithm uses Dynamic Movement Primitives (DMP) [138]
as a compact representation of a movement. As a novelty,
the actor’s policy is represented by a parameterized func-
tion approximator which is updated with respect to the
natural gradient estimates instead of the typical ones. The
critic is represented by a VF approximation with its own
set of parameters. Peters and Schaal called this algorithm
NAC. The input state of the actor’s policy is given by the
arm’s joint angles and derivatives corresponding to the 7

DoFs of the arm. As output, the actor’s policy generates
accelerations for each of the joints. The critic evaluates the
rewards by means of a computer vision algorithm which
tracks the whole system and evaluates the performance of
every trial. This methodology, as with the wheeled mobile
robot in Section 2.9.2, benefits from including prior knowl-
edge in the learning system. This time, a human teaches a
rudimentary stroke by taking the robotic hands between his
and hitting the ball when it comes. With this information,
the arm tries to hit the ball without help in subsequent
trials. Results show that after approximately 200-300 trials
the ball is correctly hit by the robot arm.

2.9.7 Learning Motor Skill Coordination

The results obtained in Section 2.9.6 with the combination
of learning from demonstration and DMP techniques has
inspired more research in this field. In [76], a robot arm
acquires new motor skills by learning the couplings across
motor control variables. The skills are first trained from
demonstration and, in order to reduce the number of states,
encoded in a modified version of DMP. In order to learn new
values for the coordination matrices, the proposed method
uses an Expectation Maximization (EM)-based RL algorithm
called Policy Learning by Weighting Exploration with the
Returns (PoWER) developed in [71]. The policy parameter-
ization allows the algorithm to learn the couplings across
the different motor control variables. One major advantage
of this algorithm over other PG-based approaches is that it
does not require a learning rate parameter, always a critical
parameter to tune in PG algorithms. Also, the proposed
algorithm can be combined with importance sampling to
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make better use of past experience to focus future explo-
ration of the parameters space. Two learning experiments
were performed: a reaching task, where the robot needs to
adapt the learned movement to avoid an obstacle, and a
dynamic pancake-flipping task. The proposed methodology
successfully accomplished both tasks, demonstrating the
fitness of the proposed approach in such highly-dynamic
real-word tasks.

2.9.8 Traffic Control

The performance demonstrated by NAC class algorithms
encouraged researchers to try this kind of methodology in
other practical applications. In 2006, Richter and Aberdeen
used an efficient on-line version of the NAC to solve an
RLP where an agent tries to learn an optimal traffic signal
control for a city [125]. Considering a street intersection as
a POFMDP, the actor’s policy is defined as a parameterized
function approximator while the critic is represented by a
VF approximation with its own set of parameters. The ac-
tor’s state input variables are measurable traffic parameters
related to sequences of cars and time cycles. As output, the
agent operates the traffic light at the intersection. The critic’s
VF computes estimates of the averaged reward considering
the immediate reward as the number of cars that entered
the intersection over the last time step. Even though the
results presented were simulated, the nature of the problem
makes no substantial difference between the simulation and
the real world. The learning algorithm does not depend
directly on a model of the traffic flow, just the ability to in-
teract with it, so the final controller learned can be plugged
into a more accurate simulation without modification. Re-
sults show that the NAC algorithm outperforms existing
traffic controllers, becoming a serious candidate for use in
real cities.

2.9.9 Summary

A summary of the practical applications described in this
section is presented in Table 1. Both, theoretical algorithms
and practical applications point towards AC methods as
the best for real robotics. Also, benefits from introducing
initial reliable knowledge into the learning system are great.
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Application On/Off Simulated Need a Method

line or real? model? used

Robot Weightlifting Off-line Simulated Yes PG

Wheeled Mobile Robot On-line Real No VF

Gait Optimization Off-line Real No PG

Passive Dynamics Walk On-line Real No AC

Planar Biped Locomotion Off-line Real No AC

Robot T-ball Off-line Real No NAC

Motor Skill Coordination On-line Real No PoWER

Traffic Control On-line Simulated Yes NAC

Table 1: A summary of the practical applications described in this
section.

This action decreases convergence times and is especially
recommended for all those risky tasks where the robot needs
to start interaction with a real environment from a safe
position.





3
P O L I C Y G R A D I E N T M E T H O D S F O R R O B O T
C O N T R O L

In this chapter, we analyze and propose the utilization of
different PG techniques for AUV in real robotic tasks. When
dealing with real robotics, most of the RL methodologies are
implemented as reactive behaviors inside a control architec-
ture. A brief discussion of the evolution of behavior-based
control architectures [12] for real robots is given at the be-
ginning of this chapter. It first reviews the history of control
architectures for autonomous robots, starting with tradi-
tional methods of Artificial Intelligence (AI) and ending
with the actual most used behavior-based architectures. The
generalization problem, which highly affects real robotics,
is described next. The most common approaches to con-
front this problem and their application to robotics tasks are
overviewed. A simple PG algorithm is chosen to carry out
the first experimental tests. The GPOMDP algorithm is one of
the algorithms proposed in this thesis to build a policy for
an RLP in a real autonomous underwater task. To solve the
generalization problem, the policy is first approximated by
means of an ANN and secondly by a barycentric interpolator.
A more complex algorithm is proposed for the second set
of results: the NAC. The great performance demonstrated
by the NAC algorithm indicates it as the learning algorithm
used for the final approach of this thesis. Also, in order
to speed up the learning process various techniques are
briefly discussed and, among them, a two-step learning
process which shares simulated and real learning is chosen
as the best option to reduce convergence time. The final
proposal, which represents the main contribution of this
thesis, is the application in a real underwater robotic task of
a two step RL technique such as NAC. For this purpose, the
NAC algorithm is first trained in a simulated environment
where it can quickly build an initial policy. In the second
step the policy is transferred to the real robot to continue
the learning process on-line in a real environment. All the
experimental results are shown in Chapter 6.

55
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Figure 6: Phases of a classical deliberative control architecture
[34].

3.1 evolution of control architectures

The first attempt at building autonomous robots began
around the mid-twentieth century with the emergence of
Artificial Intelligence. The approach begun at that time was
known as Traditional AI, Classical AI or Deliberative approach.
Traditional AI relied on a centralized world model for ver-
ifying sensory information and generating actions in the
world, following the Sense, Plan and Act (SPA) pattern [106].
Its main architectural features were that sensing flowed into
a world model, which was then used by the planner, and
that plan was executed without directly using the sensors
that created the model. The design of the classical control ar-
chitecture was based on a top-down philosophy. The robot
control architecture was broken down into an orderly se-
quence of functional components and the user formulated
explicit tasks and goals for the system [31]. The sequence
of phases usually found in a traditional deliberative control
architecture can be seen in Figure 6.

Real robot architectures and programming using an SPA
deliberative control architecture began in the late 1960s
with the Shakey robot at Stanford University [45, 107]. As
sensors, the robot was equipped with a camera, a range
finder and bump sensors that translated the camera image
into an internal world model. A planner took the internal
world model and a goal and generated a plan that would
achieve this goal. The executor took the plan and sent the
actions to the robot. The robot inhabited a set of especially
prepared rooms. It navigated from room to room, trying to
satisfy a given goal. Many other robotic systems have been
built with the traditional AI approach [6, 61, 80, 38, 78], all
of which shared the same kind of problems. Planning algo-
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Figure 7: Structure of a behavior-based control architecture [34].

rithms failed with non-trivial solutions and the integration
of the world representations was extremely difficult and,
as a result, planning in a real world domain took a long
time. Also, the execution of a plan without sensing was
dangerous in a dynamic world. Only structured and highly
predictable environments were proven to be suitable for
classical approaches.

In the middle of the 1980s, due to dissatisfaction with
the performance of robots in dealing with the real world,
a number of scientists began rethinking the general prob-
lem of organizing intelligence. Among the most impor-
tant opponents to the AI approach were Rodney Brooks
[30], Rosenschein and Kaelbling [130] and Agre and Chap-
man [3]. They criticized the symbolic world which Tradi-
tional AI used and wanted a more reactive approach with
a strong relation between the perceived world and the ac-
tions. They implemented these ideas using a network of
simple computational elements, which connected sensors
to actuators in a distributed manner. There were no central
models of the world represented explicitly. The model of
the world was the real one as perceived by the sensors at
each moment. Leading the new paradigm, Brooks proposed
the Subsumption Architecture. A subsumption architecture is
built from layers of interacting finite-state machines. These
finite-state machines were called Behaviors, representing the
first approach to a new field called Behavior-based Robotics.
The behavior-based approach used a set of simple paral-
lel behaviors which reacted to the perceived environment
proposing the response the robot must make in order to
accomplish the behavior (see Figure 7). Whereas SPA robots
were slow and tedious, behavior-based systems were fast
and reactive. There were no problems with world modeling
or real-time processing because they constantly sensed the
world and reacted to it.
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Since then, behavior-based robotic approaches have been
explored in depth. The field attracted researchers from
many disciplines such as biologists, neuroscientists, philoso-
phers, linguists, psychologists and, of course, people work-
ing with computer science and artificial intelligence, all of
whom found practical uses for this approach in their vari-
ous fields of endeavor. Successful robot applications were
built using the behavior-based approach, most of them
at MIT [39, 60]. A well known example of behavior-based
Robotics is Arkin’s motor-control schemas [11], where mo-
tor and perceptual schemas were dynamically connected to
one another.

Despite the success of the behavior-based models, they
soon reached their limits in terms of capabilities. Limita-
tions when trying to undertake long-range missions and the
difficulty of optimizing the robot behavior were the most
important difficulties encountered. Also, since multiple be-
haviors can be active at any given time, behavior-based
architectures need an arbitration mechanism that enables
higher-level behaviors to override signals from lower-level
behaviors. Therefore, another difficulty has to be solved:
how to select the proper behaviors for robustness and effi-
ciency in accomplishing goals? In essence, robots needed
to combine the planning capabilities of the classical archi-
tectures with the reactivity of the behavior-based architec-
tures, attempting a compromise between bottom-up and
top-down methodologies. This evolution was named Lay-
ered Architectures or Hybrid Architectures. As a result, most
of today’s architectures for robotics follow a hybrid pattern.
Usually, a hybrid control architecture is structured in three
layers: the reactive layer, the execution control layer and the
deliberative layer (see Figure 8). The reactive layer takes
care of the real time issues related to the interactions with
the environment. It is built by the robot behaviors where
sensors and actuators are directly connected. Each behavior
can be designed using different techniques, ranging from
optimal control to reinforcement learning techniques. The
execution control layer interacts between the upper and
lower layers, supervising the accomplishment of the tasks.
This layer acts as an interface between the numerical reac-
tive and the symbolic planning layers. It is responsible for
translating high-level plans into low-level behaviors and
for enabling/disabling the behaviors at the appropriate
moment with the correct parameters. Also, the execution
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Figure 8: The hybrid control architecture structure [34].

control layer monitors the behaviors being executed and
handles any exceptions that may occur. The deliberative
layer transforms the mission into a set of tasks which make
up a plan. It determines the long-range tasks of the robot
based on high-level goals.

One of the first architectures which combined reactiv-
ity and deliberation was proposed by James Firby. In his
thesis [46], the first integrated three-layer architecture is pre-
sented. From there, hybrid architectures have been widely
used. One of the best known is Arkin’s Autonomous Robot
Architecture (AURA) [13], where a navigation planner and
a plan sequencer were added to the initial behavior-based
motor-control schemas architecture. The Planner-Reactor
architecture [83] and the Atlantis [50] used in the Sojourner
Mars explorer are well known examples of hybrid architec-
tures.

Nowadays, hybrid architectures represent the basic foun-
dation for control architectures on real robotic systems, but
what about behavior programming? This section has de-
scribed the behaviors as a set of primitives belonging to the
reactive layer directly responsible for interaction with the
environment. Therefore, in terms of AI, there is a key factor
that must be taken into serious consideration when design-
ing behaviors: adaptation. Intelligence cannot be realized
without adaptation. If a robot requires autonomy and ro-
bustness it must adapt itself to the environment. The need
for adaptation is obvious when dealing with real robotics.
The programmer does not know all the parameters of the
system and the robot must be able to perform in different
and changing environments. At the moment there is no es-
tablished methodology to develop adaptive behavior-based
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systems. The next section describes the applicability of RL
techniques to design behaviors for control architectures.

3.2 reinforcement learning based behaviors

RL is a very suitable technique for learning in unknown en-
vironments. As has been described in Chapter 2, RL learns
from interaction with the environment and according to
a scalar reward value. The reward function evaluates the
environment state and the last taken action with respect
to achieving a particular goal. The mission of an RL algo-
rithm is to find an optimal state/action mapping which
maximizes the sum of future rewards whatever the initial
state is. The learning of this optimal mapping or policy is
also known as the RLP.

The features of RL make this learning theory useful for
robotics. There are parts of a robot control system which
cannot be implemented without experiments. For example,
when implementing a reactive robot behavior, the main
strategies can be designed without any real test. However,
for the final tuning of the behavior, there will always be
parameters which have to be set with real experiments.
A dynamics model of the robot and environment could
avoid this phase, but it is usually difficult to achieve this
model with reliability. RL offers the possibility of learning
the behavior in real-time and avoid the tuning of behav-
iors with experiments. RL automatically interacts with the
environment and finds the best mapping for the proposed
task, which in this example would be the robot’s behav-
ior. The only necessary information which has to be set
is an initial parameterization of the policy, the reinforce-
ment function which gives the rewards according to the
current state and the past action. It can be said that by
using RL the robot designer reduces the effort required to
implement the whole behavior, to the effort of designing the
reinforcement function. This is a great improvement since
the reinforcement function is much simpler and does not
contain any dynamics. There is another advantage in that
an RL algorithm can be continuously learning and, there-
fore, the state/action mapping will always correspond to
the current environment. This is an important feature in
changing environments.

RL theory is usually based on FMDPs. However, in a
robotic system, it is usual to measure signals with noise or
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delays. If these signals are related to the state of the envi-
ronment, the learning process will be damaged. In these
cases, it would be better to consider the environment as a
POFMDP (see Section 2.2). The dynamics of the environment
is formulated as a POFMDP and the RL algorithms use the
properties of these systems to find a solution to the RLP.
TD techniques are able to solve the RLP incrementally and
without knowing the transition probabilities between the
states of the FMDP. In a robotics context, this means that the
dynamics existing between the robot and the environment
do not have to be known. As far as incremental learning
is concerned, TD techniques are able to learn each time a
new state is achieved. This property allows the learning to
be performed online, which in a real system context like
a robot, can be translated to a real-time execution of the
learning process. The term online is here understood as the
property of learning with the data that is currently extracted
from the environment and not with historical data.

The combination of RL with a behavior-based system has
already been used in many approaches. In some cases, the
RL algorithm was used to adapt the coordination system
[84, 48, 67, 90]. Moreover, some researchers have used RL
to learn the internal structure of the behaviors [132, 158,
154, 140] by mapping the perceived states to control actions.
The work presented by Mahadevan [85] demonstrates that
breaking down a robot control policy into a set of behaviors
simplifies and increases the learning speed. In this disser-
tation, PG techniques are designed to learn the internal
mapping of a reactive behavior.

The main problem of RL when applied to a real system
is the generalization problem. In a real system, the variables
(states or actions) are usually continuous. However, RL the-
ory is based on FMDPs, which uses discrete variables. Classic
RL algorithms must be modified to allow continuous states
or actions. The next section overviews common methodolo-
gies applied to solve the generalization problem from its
theoretical point of view.

3.3 generalization methods

As previously stated, the generalization problem appears
when dealing with real environments with continuous
states and/or actions. In order to successfully adapt con-
tinuous variables to finite TD methods, the first solution
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might be to discretize the continuous space into a finite
space. However, in order to solve real robotic tasks, accu-
rate discretizations would require a high number of states or
state/action pairs which makes such discretizations imprac-
tical for solving real tasks. The need for function approxi-
mators that closely match or approximate a target function
in a task-specific way seems obvious.

The reasons why there are several techniques for solv-
ing the generalization problem is because none offer a
perfect solution. Some techniques have a higher general-
ization while others are computationally faster, but their
most important feature is their capability to converge into
an optimal policy. Convergence proofs have only been
demonstrated for algorithms using tabular representations
[149, 42, 160, 143]. In addition, in order to maintain stabil-
ity, the learning procedure must be performed on-policy.
This means that off-policy methods using linear function
approximators cannot profit from such convergence proof
and may diverge [121, 17, 159]. Also, TD methods suffer
from convergence problems if the function approximator is
not selected properly, as they estimate the VF based on im-
mediate rewards and on the function itself (boostrapping)
which means that the VF will always be an approxima-
tion of the discrete function. Several methods have been
developed to deal with divergence problems [17, 51, 159]
either using special update rules or special function ap-
proximators to ensure convergence. However, their use is
restricted in practice since their convergence times are slow
and they have limited generalization capabilities. Despite
the lack of convergence proofs, there are many successful
algorithms including linear and non-linear approximations
with both on and off-policy methodologies [81, 173, 151, 40].
Although it is not intended to be a survey, the next lines
show common function approximation techniques, some
of which have been used in this thesis to deal with the
generalization problem.

Classical approaches for function approximation in RL
are based on lookup table methods. However, lookup tables
do not scale well with the number of inputs, and huge
continuous spaces of robotic tasks make them impractical
for the real world. Working in this direction, a very intu-
itive approach to solving the generalization is offered by
Decision Trees [105]. This methodology discretizes the entire
state or the state/action space, also called root, into a space
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with a different resolution distribution. Those regions of
the space requiring more accuracy would be divided into
more cells or leaves than others requiring less. This variable
resolution substantially reduces the number of finite states
or state/action pairs. Decision trees highly improve the
generalization problem with respect to classical tabular RL
methods which use a uniform discretization. In addition,
the convergence of the algorithms is sometimes proved and
the generalization capability has been shown to be very
high [102]. However, in order to select greedy actions, the
whole set must be tested, resulting in slow convergence
times. Moreover, decision trees always use a finite set of
actions and, therefore, the generalization is only carried out
in the state space. Several proposals using decision trees
to solve the generalization problem can be found. The G-
Learning algorithm [37] applies a decision tree to represent
the QL over a discrete space. In another approach, the Con-
tinuous U-tree applies ideas similar to the G-Learning to a
simulated robot environment, but with a continuous repre-
sentation of the state. Other proposals show their results in
simulated tasks [123, 102].

A popular technique for solving the generalization prob-
lem in RL is the Cerebellar Model Articulation Controller
(CMAC) [4, 5]. CMAC is a simple linear approximator based
on a set of tiles. The input space is divided up into hyper-
rectangles, each of which is associated with a memory cell
or tile. The contents of the memory cells are the parame-
ters of weights, which are adjusted during training. Usually,
more than one quantization of input space is used. Various
layers or tilings may be superimposed so that any point
in input space is associated with a number of tiles, and
therefore with a number of memory cells. The output of a
CMAC is the algebraic sum of the weights in all the memory
cells activated by the input point. The generalization capa-
bility of CMAC depends on the number of tilings and the
number of tiles within each tiling. The higher the number of
tiles the better the resolution and the higher the number of
tilings the better the generalization. Since CMAC is a linear
approximator, convergence is guaranteed as long as it used
with an on-policy algorithm. However, successful applica-
tions of both on and off-policy techniques can be found
[151, 134, 133, 163]. Drawbacks of CMAC are similar to those
presented by decision trees. Although a high generaliza-
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tion capability has been demonstrated by this technique, its
application to real robotics shows slow convergence.

Other function estimation methodologies are Memory-
based techniques, also known as Instance-based techniques
[15]. Memory-based methods comprise a family of learning
algorithms that, instead of performing explicit generaliza-
tion, compare new problem instances with instances seen in
training and stored in memory. Each element of the mem-
ory represents a visited state or state/action pair also called
a case. Each case contains the value of the approximated
function. The memory is initialized with zero elements and
is dynamically filled according to the visited cases. If a
new case which is not contained in the memory appears,
neighbor cases are used to compute the value of the new
case. There are different techniques to estimate the value
of new cases: nearest neighbors, weighted average and locally
weighted regression are some of them. The convergence of
memory-based methods is not guaranteed, although its gen-
eralization capability is very high. Memory-based systems
are a kind of lazy learning since the generalization beyond
the training data is delayed until a query is made to the
system. The main advantage gained in employing a lazy
learning method is that the target function will be locally
approximated and, therefore, lazy learning systems can
simultaneously solve multiple problems and deal success-
fully with changing environments. The main disadvantage
of these techniques is that they have high computational
requirements. Each time a new approximation is required,
the whole process must be performed with all its neigh-
bor cases computation. Also, the space required to store
the entire training data set tends to be high. Particularly
noisy training data increases the case base unnecessarily
because no abstraction is made during the training phase.
In addition, as happened with decision trees, in order to
find a greedy action, a finite set of actions must be evalu-
ated, which again implies extra computation time. Some
examples of their performance on simulated tasks can be
found in [113, 93, 109]. Despite their inconvenience for real
robotics, some approaches obtained good results [144, 97].
A comparison between memory-based methods and CMAC
can be found in [134] where memory-based techniques
show better performance.

Continuing along the path of linear approximators, a sim-
ilar CMAC technique is the basis function [152]. The idea is
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to substitute the binary activation function of each tile by
a continuous function. The approximated value is a linear
function of the parameter vector to be identified. Corre-
sponding to each state, there is a vector of features with
the same number of components as the parameter vector.
The resultant output of the function is the algebraic sum
of the products between each parameter with its corre-
spondent feature. Feature selection becomes critical for a
good approximation and the later success of the learning
algorithm. Choosing features appropriate to the task is an
important way of adding prior domain knowledge to rein-
forcement learning systems. Intuitively, the features should
correspond to the natural features of the task, those for
which generalization is most appropriate. If we are valuing
geometric objects, for example, we might want to have fea-
tures for each possible shape, color, size, or function. If we
are valuing states of a mobile robot, then we might want
to have features for locations, degrees of remaining bat-
tery power, recent sonar readings, and so on. The features
may be constructed from the states in many different ways,
resulting in different kinds of well known basis function
approximators: coarse coding, tile coding [152], radial basis
functions [120, 118], barycentric interpolators [101, 102] and
more recently Proto-value Functions [86] are some examples.
The main advantage of using basis functions is that, if fea-
ture selection is appropriate for the task, they can be very
efficient in terms of both data and computation for real
robotic applications. Over the last few years, much work
has been devoted to the topic of developing basis functions
techniques. The methods presented in [145] and [122] are
essentially heuristics that attempt to exploit the intuition
that trajectories taken by the system may lie along a low-
dimensional manifold. In [95] the basis functions and the
parameters vector are adapted simultaneously, using either
gradient descent or the cross-entropy method. In this case,
though, the resulting approximator can no longer be con-
sidered linear. Also, some practical applications of radial
basis functions in robotics can be found in [135, 75].

One of the most important breakthroughs was the in-
troduction of Artificial Neural Networks (ANNs) as func-
tion approximators for learning algorithms [58]. An ANN
is a parameterized function composed of a set of neurons
which become activated depending on some input values.
These neurons generate an output according to an activation
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function. Neuron outputs can be used as inputs for other
neurons, forming a multi-layered structure. By combining
a set of neurons and using non-linear activation functions,
an ANN is able to approximate any non-linear function,
making them a very powerful algorithm. As a drawback,
the convergence of an RL algorithm using an ANN cannot
be guaranteed due to its non-linear nature. In addition,
ANNs suffer from inference problems [167, 15]. When an
ANN-based learning algorithm updates its parameters to
change the output value, that change affects the entire space,
so a learning step in a particular region of the state space
causes a step backward in another place. Solutions to avoid
inference point towards using ANNs locally or uniformly
updating the space. ANN-based algorithms have been suc-
cessfully applied to approximate VFs in real robotic tasks
[53, 56, 87, 49, 32] and higher generalization capabilities are
demonstrated in [173, 27]. In [156] an ANN based system
learns to play backgammon. The resultant algorithm was
able to play at the same level as the best human players
in the world. Successful applications like this motivated
the application of function approximators to real robotics.
Initial experiments presented in this dissertation use ANN
as the function approximator to learn the policy.

Over the last few years, another class of algorithms have
received special attention from the RL community: Support
Vector Machines (SVMs) [162]. These algorithms have been
used mainly for classification tasks. Given a set of train-
ing examples, each marked as belonging to one of two
categories, an SVM training algorithm builds a model that
predicts whether a new example falls into one category or
the other. Intuitively, an SVM model is a representation of
the examples as points in space, mapped so that the exam-
ples of the separate categories are divided by a clear gap
that is as wide as possible. New examples are then mapped
into that same space and predicted to belong to a category
based on which side of the gap they fall on. Although these
methods are known for their application in classification,
they can also be used to approximate functions. The main
idea is to apply a variation of SVM called SVM-Regression
or Support Vector Regression (SVR) [139] to approximate
the VF. SVR represents a powerful alternative: in princi-
ple unharmed by the dimensionality, trained by solving a
well defined optimization problem, and with generalization
capabilities presumably superior to local instance-based
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methods. Even though most of the experimental results are
limited to off-line learning [43], some on-line algorithms
have appeared recently with promising results [89, 65].

3.4 gpomdp in robotics

The GPOMDP algorithm is an on policy search methodology.
Its aim is to obtain a parameterized policy that converges
to an optimal by computing gradient approximations of the
averaged reward from a single path of a controlled POFMDP.
The theoretical aspects of the algorithm have been presented
in Section 2.6.2. The GPOMDP algorithm is a TD method and,
like all TD methods, the dynamics of the environment does
not have to be known. Another important feature of TD
algorithms is that the learning process can be performed
on-line. The characteristics of the algorithm together with
its mathematical simplicity make the GPOMDP approach
a good startup to solve the RLP in real robotic tasks. This
section analyzes the application of the on-line version of
the algorithm in a real system such as a robot.

The algorithm works as follows: having initialized T > 0,
the parameter vector θ0 arbitrarily and setting the eligi-
bility trace vector z0(θ) = 0, the learning procedure will
be iterated T times. At every iteration, the system receives
the current state from the environment st. The algorithm
generates a control action at according to current stochastic
policy π(at|st, θt) and a reward rt+1. The reward function
r(s,a) is defined experimentally depending on the RLP. Af-
ter that, the eligibility trace zt(θ) is updated according to the
gradient of the current policy with respect to its parameters.
The eligibility’s decay factor λ is set between [0,+1) with
the aim of increasing or decreasing the agent’s memory
of past actions. The immediate reward received rt+1 and
the eligibility trace zt+1(θ) allow us to finally compute the
new vector of policy parameters θt+1. The current policy is
directly modified by the new parameters, becoming a new
policy to be followed by the next iteration, getting closer
to a final policy that represents a correct solution to the
problem. The learning rate factor α, tuned experimentally,
controls the step size of the iteration process, trying to find
a compromise between learning speed and convergence
guarantees.

From the different generalization techniques described
in Section 3.3, two different function approximators have
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Figure 9: Implementation of a simple policy with an ANN.

been selected to represent the policy: ANNs and barycentric
interpolators.

3.4.1 Policy Approximation with ANN

Together with the GPOMDP algorithm, a parameterized ANN
function is one of the approximators selected to represent a
stochastic policy π(at|st,wt). Its weights wt represent the
policy parameters to be updated at every iteration step. Ad-
vantages and drawbacks of various function approximators
have been described in Section 3.3. The main reason for
choosing an ANN as one of the approximators for these
initial experiments is for its excellent ability to approximate
any nonlinear function in comparison with other function
approximators. Also, an ANN is easy to compute and the
required number of parameters is very small, making it suit-
able for application with the GPOMDP approach. An ANN
is a function approximator able to approximate a math-
ematical function which has a set of inputs and outputs.
The input and output variables are real numbers and the
approximated functions can be non-linear, according to the
features of the ANN. ANN were inspired by the real neurons
found in the human brain, although a simpler representa-
tion is used. As stated in Section 3.3, the basic theory of
ANN was widely studied during the 1980s but there are still
many active research topics.

The ANN model used to represent the policy in this first
approach is depicted in Figure 9. The state vector is driven
directly as the ANN input. The output of the network is
the number of continuous variables which make up the
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action space. As can be seen, neurons are grouped in dif-
ferent layers. The first layer uses the state vector as neuron
inputs {s1, ..., sn}. This set of inputs is also called input layer,
although it is not a layer of neurons. The second and con-
secutive layers use as neuron inputs the neuron outputs
from the preceding layer. Finally, the last layer of the ANN
is the output layer, where each neuron generates an output
of the network as actions {a1, ...,am} of the approximated
policy. All the neuron layers preceding the output layer are
also called hidden layers since the neuron output values are
not seen from the outside nor are they significant.

Going deeper into the design of the network, Figure 10

takes a closer look into a single neuron. The neuron j lo-
cated in the layer l has a set of inputs {yl−11 ,yl−12 , ...,yl−1p }

and one output ylj. The value of this output depends on
these inputs, on a set of weights {wlj1,w

l
j2, ...,wljp} and on

an activation function ϕl. In the first computation, the in-
duced local field vlj of the neuron j is calculated by adding
the products of each input yl−1i by its corresponding weight
wlij. An extra input yl−10 is added to the computation of vlj.
This input is called the bias term and has a constant value
equal to 1. By adjusting the weight wlj0, the neuron j can
be activated even if all the inputs are equal to 0. The local
field vlj is then used to compute the output of the neuron
ylj = ϕ

lvlj. The activation function has a very important role
in learning efficiency and capability. The learning process
of the ANN consists of adapting the parameters or weights
of the network until the output is equal to a desired re-
sponse. The GPOMDP algorithm has the goal of indicating
the procedure to modify the values of these parameters.

The next lines will describe the parameter update proce-
dure carried out by the GPOMDP algorithm for the particular
case of an ANN as the policy approximator. Once the pa-
rameters of the ANN are initialized, the network receives
an observation of the state as input st and gives a control
action as output at. Then, the algorithm is driven to another
state st+1 and will receive a reward associated with this new
state rt+1. The first step in the parameter update procedure
is to compute the gradient of the policy with respect to each
parameter. As defined in Equation 3.1, in the ANN context,
the gradient of the policy with respect to each parameter is
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Figure 10: Diagram of a single neuron j located at layer l.

equal to the local gradient δt associated with a single neuron
multiplied by the input to the neuron yt.

dπ(at|st,wt)
dwt

= δtyt. (3.1)

In order to calculate the local gradient of all the neurons in
a particular ANN, the local gradient of the neurons at the
output layer must be computed first and then propagated
to the rest of the neurons in the hidden layers by means of
backpropagation. For the local neuron j located in the output
layer, we may express its local gradient as

δoj = ejϕ
′(oj). (3.2)

Here ej is the error in the output of neuron j, ϕ ′(oj) corre-
sponds to the derivative of the activation function associ-
ated with that neuron and oj is the function signal in the
output for that neuron. Therefore, for neuron j located in a
hidden layer, the local gradient is defined as follows

δhj = ϕ ′(oj)
∑
k

δkwkj. (3.3)

As can be seen in Figure 11, when computing the gradi-
ent of a neuron located in a hidden layer, the previously
obtained gradient of the following layers must be back
propagated. ϕ ′(oj) is the derivative of the activation func-
tion associated with that neuron and the summation term
includes the different gradients of the following neurons
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Figure 11: Local gradient computation for a hidden layer neuron.

back propagated by multiplying each gradient δk with its
correspondent weight wkj.

With the local gradients of all the neurons computed,
the gradients of the policy with respect to each weight
in the ANN can be obtained. As described in the GPOMDP
procedures of Algorithm 4, eligibility traces can be calcu-
lated following Equation 3.4. Finally, the parameter vector
is updated following Equation 3.5, i. e.,

zt+1(w) = λzt(w) + δtyt, (3.4)

wt+1 = wt +αrt+1zt+1(w). (3.5)

Here the vector of parameters w represents the network
weights to be updated and rt+1 is the reward given to the
agent at every time step. The learning rate α controls the
step size of the iteration process.

3.4.2 Policy Approximation with Barycentric Interpolators

A parameterized basis function represented by a barycentric
interpolator is another approximator chosen to represent
the policy π(at|st, θt) together with the GPOMDP approach.
Barycentric interpolators, described in Section 3.3, are a
specific class of basis function approximators. These basis
functions are a popular representation for VFs because they
provide a natural mechanism for variable resolution dis-
cretization of the function and the barycentric co-ordinates
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Figure 12: An N-dimension rectangular mesh. The mesh elements
need not be regular, however, the boundary can vary
in extent.

allow the interpolators to be used directly by value iteration
algorithms. Another advantage in choosing linear function
approximators is their convergence guarantees when used
together with an on-policy method such as the GPOMDP
algorithm. Barycentric interpolators apply an interpolation
process based on a finite set of discrete points that form
a mesh. This mesh does not need to be regular, but the
method outlined here assumes that the state space is di-
vided into a set of rectangular boxes. An example of an
appropriate mesh is shown in Figure 12. In practice, we
will often start with a grid that is iteratively remeshed and
which would look more like Figure 13. Getting the barycen-
tric interpolation itself to work only requires a mesh of
the type shown in Figure 12, though. The key is that any
particular point is enclosed in a rectangular box that can be
defined by the 2N nodes in our N-dimensional state space.

As shown in Figure 14, ξi being a set of nodes distributed
in a rectangular mesh for any state s. Once it is enclosed
in a particular box (ξ1, ..., ξ4) of the mesh, the state s be-
comes the barycenter inside this box with positive coeffi-
cients p(s|ξi) of sum 1 called the barycentric coordinates and,
therefore,

s =
∑
i=1..4

p(s|ξi)ξi. (3.6)
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Figure 13: A more typical-looking mesh, where an initial grid has
been refined through iterative splitting of some of the
elements.

Thus, V(ξi) is set as the value of the function at the nodes
previously defined as ξi. Having defined the value of the
function at the nodes of the mesh, Equation 3.7 shows how
to compute the value of the function at state s, called the
barycentric interpolator of state s and defined as V(s). The
value of state s is calculated as a function of the value V(ξi)
at the nodes of the box in which the state is enclosed and
its barycentric coordinates p(s|ξi). As depicted in Figure 15,
we give

V(s) =
∑
i=1..4

p(s|ξi)V(ξi). (3.7)

The policy is approximated using a barycentric interpola-
tor function where the nodes of the mesh V(ξi) represent
the policy parameters θ to be updated at each learning
iteration. Therefore, given an input state st, the policy will
compute a control action V(st) = at. The parameters of
the approximator are updated following the procedures
stated in Algorithm 4. As defined in Equation 3.8, in the
barycentric approximator context, the gradient of the policy
with respect to each parameter is equal to the derivative of
the approximator with respect to the parameter multiplied
by an error function et, hence,

dπ(at|st, θt)
dθt

=
dV(st)

dV(ξi)
et. (3.8)
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Figure 14: Graphic representation of the barycentric coordinates

given a state s in a 2 dimensional mesh case.

Here the error is given by

et = V(st)desired − V(st). (3.9)

The eligibility trace zt+1 is updated following Equation 3.10.
Eligibility’s decay factor λ controls the memory on past
actions. The gradient of the policy with respect to a partic-
ular parameter contains the barycentric coordinate of the
parameter p(s|ξi),

zt+1 = λzt + p(st|ξi)et. (3.10)

Finally, the new parameter vector is given by

V(ξi)t+1 = V(ξi)t +αrt+1zt+1. (3.11)

The vector V(ξi) represents the policy parameters to be
updated, rt+1 is the reward given to the agent at every time
step and α as the learning rate of the algorithm.

3.5 natural actor-critic in robotics

The experimental results obtained with both approxima-
tions described in Section 3.4 showed poor performance
of the algorithm. Although the GPOMDP approach is able
to converge to an optimal or near optimal policy, results
suggest that the application of a pure PG algorithm in a real
task is quite slow and rigid. Fast convergence and adapta-
tion to an unknown changing environment is a must when
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a particular state s.

dealing with real applications and a PG seems not able to
do so alone. With the objective of finding a faster algorithm,
the attention of this thesis moves to AC methodologies. As
discussed in Section 2.8, AC methods try to combine the ad-
vantages of PG algorithms with VF methods. The actor’s PG
gives convergence guarantees while the critic’s VF reduces
variance of the policy update improving the convergence
rate of the algorithm. Also, AC methods are on-policy algo-
rithms and, therefore, the learning procedure benefits from
convergence proofs. The main features of AC methods seem
to have what real robotics is looking for.

The theoretical aspects of the algorithm have been pre-
sented in Section 2.8.4. The algorithm is divided into two
main blocks, one concerning the critic and another the
actor. The critic is represented by a VF Vπ(s) which is ap-
proximated by a linear function parameterization repre-
sented as a combination of the parameter vector v and a
particularly designed basis function φ(s), the whole ex-
pression being Vπ(s) = φ(s)v. On the other hand, the ac-
tor’s policy is specified by a normal distribution π(a|s) =
N(a|Ks,σ2). The mean µ of the actor’s policy distribution
is defined as a parameterized linear function of the form
a = Ks. The variance of the distribution is described as
σ = 0.1+ 1/(1+ exp(η)). Therefore, the whole set of the
actor’s parameters is represented by the vector θ = [K,η].
The actor’s policy derivative has the form d logπ(a|s,θ)

dθ and,
as detailed in Section 2.6.4, in order to obtain the natu-
ral gradient, this function is inserted into a parameterized
compatible function approximation, f(s,a)πw =

d logπ(a|s,θ)
dθ w,

with the parameter vector w as the true gradient .
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At every iteration, action at is drawn from the current
policy πt generating a new state st+1 and reward rt. After
updating the basis function and the critic’s statistics by
means of LSTD-Q(λ), the VF parameters v and the natural
gradient w are obtained. The actor’s policy parameters are
updated only if the angle between two consecutive natural
gradients is small enough compared to an ε term. The
learning rate of the update is controlled by the α parameter.
Next, the critic has to forget part of its accumulated statistics
using a forgetting factor, β ∈ [0, 1]. The current policy is
directly modified by the new parameters becoming the new
policy to be followed in the next iteration, getting closer
to a final policy that represents a correct solution to the
problem.

3.6 methods to speeding up reinforcement learn-
ing

Speeding up RL algorithms in real continuous high dimen-
sional domains represents a key factor. The idea of pro-
viding initial high-level information to the agent is a topic
that has received significant attention in the real robotic
field over the last decade. The main objective of these tech-
niques is to make learning faster in contrast to tedious re-
inforcement learning methods or trials-and-error learning.
Also, it is expected that the methods, being user-friendly,
would enhance the application of robots in human daily
environments. This section briefly describes some common
techniques for enhancing and accelerating learning in real
robotic applications.

One form of speeding up the learning process is to
have the robot learn a particular task by watching the task
being performed by a human or an expert system. The
approach is known as Learning From Demonstration, Pro-
gramming From Demonstration, Imitation Learning or simply
Teaching [28, 15, 81]. Teaching plays a critical role in human
learning. The main idea is that teaching can shorten the
learning process and even turn intractable learning tasks
into tractable. If learning is resumed as a search problem,
the teacher gives external guidance for this search. For this
kind of learning, the robot can try to repeat the actions
taken by the teacher or learn how the teacher acts and re-
acts to the different situations encountered, finally building
its own policy. Although these kinds of techniques encom-
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pass a wide range of algorithms with thier own procedures,
a general teaching process overview may be one like this:
The teacher shows the learning agent how an instance of
the target task can be achieved from some initial state.
The sequence of actions, state transitions and rewards are
recorded as a lesson. Several taught lessons can be collected
and repeatedly replayed. Like experienced lessons, taught
lessons should be replayed selectively; in other words, only
policy actions are replayed. But if the taught actions are
known to be optimal, all of them can be replayed all the
time. The term lesson refers to both taught and experienced
lessons. It is unnecessary for the teacher to demonstrate
only optimal solutions in order for the agent to learn an
optimal policy. In fact, the agent can learn from both posi-
tive and negative examples. This is an important property
as it makes teaching techniques different from supervised
learning approaches [100, 119]. Teaching is useful for two
reasons: First, teaching can direct the agent to first explore
the promising part of the search space which contains the
goal states. This is important when the search space is large
and a thorough search is infeasible. Second, teaching can
help the agent to avoid being stuck in local maxima. The
idea of providing initial high-level information to the agent
has achieved great success in several applications. In [57],
an outdoor mobile robot learns to avoid collisions by observ-
ing a human driver operate a vehicle equipped with sensors
that continuously produce a map of the local environment.
The work presented in [117] shows how imitation learning
can be used to extract an initial policy to learn a control
task where an anthropomorphic arm tries to hit a ball. First,
a human teacher gives the agent an insight into the task by
helping it hit the ball. Results show that this initial policy
is not good enough to fulfil the task. Therefore, in a second
phase, an NAC algorithm is applied to improve the policy
obtaining a better policy which successfully accomplishes
the task.

Other approaches to accelerate the learning process with
real robots use Supplied Control Policies to feed prior knowl-
edge to the agent [144]. The main idea is to split the learn-
ing into two phases. In the first phase, the robot is being
controlled by a supplied control policy. This initial control
policy can be represented either by a classic controller or
by a human controlling the robot. During this period, the
agent passively watches state transitions, actions and re-
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wards that the supplied control policy generates and uses
them to update its policy. The supplied control policy ex-
poses the agent to those areas of the space-state where the
reward is not zero, accelerating the learning process. Differ-
ing from previously described techniques, the agent does
not mimic the trajectories generated by the supplied policy,
it just uses them to update its policy. Also, these trajectories
are not generated directly, as in teaching, but as a result of
interaction with the environment. When the learned policy
is considered good enough, in a second phase, the agent
takes control of the robot and continues the learning by
normal interaction with the environment. Results presented
in [147] show the viability of supplied control policies for
speeding up learning algorithms. In that paper, a mobile
robot successfully learns control policies for two simple
tasks: obstacle avoidance and corridor following.

Another way of reusing past experiences, which was
investigated in the DYNA architecture [150], is to use ex-
periences to build an action model and use it for planning
and learning. An action model can be understood as a
computer simulator which mimics the behaviors of the en-
vironment for a particular RLP. The action model contains
the dynamics of the environment together with its reward
function. Instead of direct interaction with the environment,
the agent can experience the consequences of actions with-
out physically being in the real world. As a result, the robot
will learn faster as the iteration steps with the simulator
would be faster than those with the real world and more
importantly, fewer mistakes will be made when the robot
starts running in the real world with a previously trained
policy. Approximate policies learned in simulation repre-
sent a good startup for the real learning process, meaning
that the agent will face the challenge of the real world with
some initial knowledge of the environment, avoiding initial
gradient plateaus and local maxima dead ends [81]. The
help of computer simulators has been successfully applied
in [16] where a PG algorithm designed to control a RC-
helicopter is first trained off-line by means of a computer
simulator. Once the agent’s policy is considered to be safe
enough it is transferred to the real vehicle where the learn-
ing process continues. Also, in [77], a technique called Time
Hopping is proposed for speeding up reinforcement learn-
ing algorithms in simulation. Experiments on a simulated
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biped crawling robot confirm that this technique can greatly
accelerate the learning process.

The success of such techniques is closely related to the ac-
curacy of the simulation, being almost impossible to apply
to real complex tasks where a model of the environment
can not be obtained. In order to have a simulation phase
that really represents an advantage, a good model has to
be provided. For the particular RLP proposed in this thesis,
most of the model identification work is based on the dy-
namic equations of motion derived from the Newtonian or
Lagrangian mechanics [47], which are characterized by a set
of unknown parameters. The application of system identifi-
cation techniques to underwater vehicles is concerned with
the estimation, on the basis of experimental measurements,
of a number of parameters or of hydrodynamic derivatives
that characterize the vehicle’s dynamics [2]. Such measure-
ments, collected during full-scale trials by the on-board
sensors [33], or during captive testing in a planar motion
mechanism [108], are processed by a parameter estimation
routine [82]. Several methods have been proposed in the
literature for this purpose like the use of genetic algorithms
and simulated annealing [157]. Nevertheless, since the dy-
namic equation of motion can be formulated as an equation
linear in the vector of unknown parameters, LS methods
can be easily used.

The final proposal of this thesis is the application in
a real underwater robotic task of RL-based behavior in a
two step learning process. The RL method chosen is the
NAC algorithm. For this purpose, the learning algorithm
is first trained in a simulated environment where it can
quickly build an initial policy. An approximated model of
the environment emulates a robot with the same number
of DoFs of the real one. Once the simulated results are
accurate enough and the algorithm has acquired enough
knowledge from the simulation to build an approximated
policy, in a second step the policy is transferred to the real
robot to continue the learning process on-line in a real
environment. Since the simulated model and environment
are just approximations, the algorithm will have to adapt to
the real world. An important idea is that, once the algorithm
converges in the real environment, the learning system
will continue working forever, being able to adapt to any
future change. The next chapter accurately describes the
identification procedures carried out to obtain a model of
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the environment, which is applied to learn an initial policy
during the first step of the learning process.



4
M O D E L I D E N T I F I C AT I O N F O R
U N D E RWAT E R V E H I C L E S

In order to decrease learning periods, the previous chapter
proposed a learning methodology where a model of the
environment is needed for the initial learning phase: the
learning in simulation step. For this purpose, an approxi-
mated model of the underwater vehicle that will be used to
test the learning methodologies proposed in the previous
chapter must be computed. The following lines describe the
dynamics equations of motion for an underwater vehicle.
After that, some common assumptions are detailed to adapt
the general equation to our particular vehicle and, therefore,
simplify the problem. Finally, an LS identification method is
proposed and applied to identify the vehicle’s parameters.
Some results regarding the performance of the identified
model are given at the end of this chapter.

4.1 the autonomous underwater vehicle model

As described in [47], the non-linear hydrodynamic equation
of motion for an underwater vehicle with 6 DoFs can be
conveniently expressed in the fixed body frame {B} as

τB+G(η)B−D(υB)υB+τBp=(MB)υ̇B +CB(υB)υB, (4.1)

where we have the following variables:

• υB and υ̇B are the velocity and acceleration vectors.

• η = (φ, θ,ψ)T is the position and attitude vector.

• τB is the resultant force-moment vector exerted by
thrusters.

• G(η)B is a vector of gravitational forces and moments.

• D(υB) corresponds to the linear and quadratic damp-
ing matrixes.

• MB corresponds to the inertia matrix (including added
mass).

81



82 model identification for underwater vehicles

• CB represents the matrix of Coriolis and centripetal
terms (including added mass).

• τBp is a vector of unmodelled perturbations.

Equation 4.1 relates the forces exerted on the AUV with
the acceleration and the velocity experienced by the vehi-
cle. In other words, if the forces acting on the robot are
known, Equation 4.1 allows for the estimation of the robot’s
acceleration, velocity and position.

4.1.1 Common Simplifications

Equation 4.1 represents a complex non-linear model with
couplings among the different degrees of freedom depen-
dent on a large set of physical parameters (the robot’s mass
and inertia, the linear and nonlinear friction coefficients,
thrust coefficients, etc...). Nevertheless, after some simplifi-
cations, it is possible to carry out identification experiments
to find the most relevant coefficients to obtain an approxi-
mate model:

• The fixed body frame is located at the vehicle’s center
of gravity ((xG yG zG)

B = (0 0 0)B). In the same way,
the fixed body frame axes coincide with the principal
axes of inertia or the longitudinal, lateral and normal
symmetry axes of the vehicle, so the origin of the
fixed body coordinate system can then be chosen so
that the inertia tensor will be diagonal, that is I3x3 =
diag(Ixx, Iyy, Izz). Moreover, the vehicle is considered
a neutrally buoyant underwater vehicle.

• For an underwater vehicle with 6 DoF, damping forces
are highly nonlinear and coupled. In practical applica-
tions, it is difficult to determine off-diagonal terms in
the general expression of the damping matrix D(υB).
Since the vehicle will perform non-coupled move-
ments, D(υB) can be assumed to be diagonal, with
linear and quadratic damping terms on the diagonal.
Forward and backward damping coefficients are con-
sidered equal due to the square shape of the vehicle
which gives it three planes of symmetry.

• The vehicle moves at low speed and, due to the sym-
metry condition mentioned before, the contribution
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from off-diagonal elements in MB can be ignored.
Also, decoupled movement assumption discards Cori-
olis terms.

Let us consider hereafter, the main forces acting on a AUV.

4.1.2 Forces Exerted by Thrusters

When a thruster propelled vehicle is considered, a thruster
model has to be used for computing the axial force exerted
by the propeller. Although the thruster has its own dynam-
ics [169], when the propeller is speed-controlled the servo
velocity loop can be designed to have a much smaller time
constant than the time constant of the whole vehicle. Then,
the thruster dynamics can be ignored and a steady-state
model can be used. The thrust is better described by a bi-
linear model. A bilinear model can be used to estimate the
thrust exerted by the thruster i as a function of the angular
speed of the propeller (ωi) and the linear velocity of the
vehicle (υi) in the thruster direction, as shown by

τi = bi,1|ωi|ωi − bi,2|ωi|υi. (4.2)

Nevertheless, for vehicles moving at slow speeds, the affine
thruster model can be used (see Equation 4.3). This model
is the same as the previous one in the special case of υi = 0.
The thruster constant parameter bi,1 has been renamed to
CT ,i, hence,

τi = CT ,i|ωi|ωi. (4.3)

If the thruster has not been specifically designed for sym-
metric thrust, different CT must be expected for each direc-
tion as stated by

τi =

{
CTf,i|ωi|ωi if ωi > 0,
CTb,i|ωi|ωi if ωi < 0.

(4.4)

Moreover, as stated in [33], a non-neglectable efficiency loss
due to the interactions between the propeller and the hull is
experienced when the thruster is mounted and operated in
the AUV. For this reason, CTf,i and CTb,i must be identified
while mounted on the vehicle. For the model identification
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of Ictinieu AUV, the steady-state thruster affine model will
be used for computing the force exerted by the thrusters
from the rotational speed of the propellers. Once the thrust
exerted by each thruster is known, a thruster configuration
matrix B depending on the thruster coefficients as well as
on the geometry of their location can be defined as detailed
in

τB = Bu,



X

Y

Z

K

M

N



B

= B

 |ω1|ω1

...
|ωn|ωn

 ,

(4.5)

where (X, Y,Z,K,M,N)T is the total force and moment vec-
tor and n represents the number of thrusters of the vehicle.
This expression allows for computing the resultant force
and torque exerted by all the thrusters.

4.1.3 Restoring Forces and Moments

The vector of gravitational forces and moments G(η)B is the
resultant vector of combining gravity with the buoyancy
forces on the vehicle. The gravity (FBW) and buoyancy (FBB)
forces are constant forces in earth coordinate systems if
the vehicle does not change its weight or volume. In such
cases, these forces have only to be referenced to the vehicle’s
coordinate system depending on its orientation. The total
gravity force magnitude (W) of a submerged body and the
total buoyancy force magnitude (B) can be expressed as

W = mg,
B = ρVg.

(4.6)

Here m represents the mass of the vehicle including the
water in free floating space, V is the volume of liquid dis-
placed by the vehicle, g is the acceleration of gravity (posi-
tive downwards) and ρ is the liquid density. As stated in
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Section 4.1.1, the fixed body frame is located at the vehicle’s
center of gravity ((xG yG zG)

B = (0 0 0)B) with the center
of buoyancy defined as (xb yb zb)

B, then the vector G(η)B

can be computed as

G(η)B = FBW + FBB,

G(η)B =



−Wsθ

Wcθsφ

Wcθcφ

0

0

0


+



Bsθ

−Bcθsφ

−Bcθsφ

Bzbcθsφ−Bybcθcφ

Bxbcθcφ+Bzbsθ

−Bxbcθsφ−Bybsθ


.

(4.7)

s and c being the sine and the cosine respectively, η =

(φ, θ,ψ)T the vehicle’s Roll, Pitch and Yaw angles, FBB the
buoyancy forces and moments and FBW the gravity forces
and moments. Considering that a neutrally buoyant under-
water vehicle satisfies W = B, combining expressions of
Equation 4.7 yields

G(η)B =



0

0

0

Bzbcθsφ−Bybcθcφ

Bxbcθcφ+Bzbsθ

−Bxbcθsφ−Bybsθ


. (4.8)

4.1.4 Hydrodynamic Damping

The damping forces are drag forces depending on the ve-
hicle’s speed. As shown in Equation 4.9, the two main
components are the linear damping (DL) and the quadratic
damping (DQ). Linear damping refers to the skin friction
due to laminar boundary layers while the quadratic form
contains skin friction due to turbulent boundary layers:

D(υB) = DL +DQ. (4.9)

Simplifications proposed in Section 4.1.1 suggest that the
vehicle performs non-coupled movements, so the damp-
ing matrixes can be assumed diagonal, with linear and
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quadratic damping terms on the diagonal. Hence, the equa-
tion that describes these forces is expressed as follows;

D(υB) =



Xu 0 0 0 0 0

0 Yv 0 0 0 0

0 0 Zw 0 0 0

0 0 0 Kp 0 0

0 0 0 0 Mq 0

0 0 0 0 0 Nr


+



Xu|u||u| 0 0 0 0 0

0 Yv|v||v| 0 0 0 0

0 0 Zw|w||w| 0 0 0

0 0 0 Kp|p||p| 0 0

0 0 0 0 Mq|q||q| 0

0 0 0 0 0 Nr|r||r|


.

(4.10)

Here (Xu Yv Zw Kp Mq Nr) correspond to the linear terms,
(Xu|u| Yv|v| Zw|w| Kp|p| Mq|q| Nr|r|) are the quadratic terms
and (u v w p q r) is the linear and angular velocity vector.
Adding matrixes of Equation 4.10 yields

D(υB) = diag(Xu +Xu|u||u|, Yv + Yv|v||v|,Zw +Zw|w||w|,

Kp +Kp|p||p|,Mq +Mq|q||q|,Nr +Nr|r||r|).
(4.11)

4.1.5 Added Mass, Inertia and Coriolis Terms

As described in Equation 4.1, both the inertia and Coriolis
matrixes include an added mass term. Added mass refers
to the inertia added to a system because an accelerating or
decelerating body must displace some volume of surround-
ing liquid as it moves through it, since the object and liquid
cannot occupy the same physical space simultaneously. For
simplicity, this has been modeled as some volume of liquid
moving with the object, though in reality all the liquid will
be accelerated to various degrees.

To fit with rigid body dynamics, the added mass term is
divided in two terms: the added mass inertia matrix (MB

A)
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and the added mass matrix of hydrodynamic Coriolis and
centripetal terms (CBA). Therefore, as shown in Equation 4.12,
both matrixes are combined with the rigid-body inertia
matrix (MB

RB) and the rigid-body matrix of hydrodynamic
Coriolis and centripetal terms (CBRB), given by

MB =MB
RB +M

B
A,

CB = CBRB +C
B
A.

(4.12)

The parametrization of the inertia matrix MB of Equa-
tion 4.12 is described by

MB =



m 0 0 0 mzG −myG

0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0

0 −mzG myG Ixx −Ixy −Ixz

mzG 0 −mxG −Iyx Iyy −Iyz

−myG mxG 0 −Izx −Izy Izz


+



−Xu̇ −Xv̇ −Xẇ −Xṗ −Xq̇ −Xṙ

−Yu̇ −Yv̇ −Yẇ −Yṗ −Yq̇ −Yṙ

−Zu̇ −Zv̇ −Zẇ −Zṗ −Zq̇ −Zṙ

−Ku̇ −Kv̇ −Kẇ −Kṗ −Kq̇ −Kṙ

−Mu̇ −Mv̇ −Mẇ −Mṗ −Mq̇ −Mṙ

−Nu̇ −Nv̇ −Nẇ −Nṗ −Nq̇ −Nṙ


.

(4.13)

Here (xG yG zG)
B are the coordinates of the vehicle’s center

of gravity, I3x3 is the inertia tensor with respect to the origin
of the fixed body frame {B},m is the mass of the vehicle and
Aij = {MB

A}ij are the hydrodynamic added mass derivative
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terms. Due to the simplifications carried out in Section 4.1.1,
simple expressions of MRB and MA are

MB =



m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Ixx 0 0

0 0 0 0 Iyy 0

0 0 0 0 0 Izz


+



−Xu̇ 0 0 0 0 0

0 −Yv̇ 0 0 0 0

0 0 −Zẇ 0 0 0

0 0 0 −Kṗ 0 0

0 0 0 0 −Mq̇ 0

0 0 0 0 0 −Nṙ


,

MB = diag(m−Xu̇,m− Yv̇,m−Zẇ,
Ixx −Kṗ, Iyy −Mq̇, Izz −Nṙ).

(4.14)

The parametrization of the Coriolis matrix (CB) of Equa-
tion 4.12 is detailed in Equation 4.15. For a rigid-body mov-
ing through an ideal liquid, both the rigid-body Coriolis
and centripetal matrix (CBRB) and the added mass matrix of
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hydrodynamic Coriolis and centripetal terms (CBA), can be
parameterized as

CB =



0 0 0 a1 −a2 −a3

0 0 0 −a4 a5 −a6

0 0 0 −a7 −a8 a9

−a1 a4 a7 a10 −a11 a12

a2 −a5 a8 a11 a10 −a13

a3 a6 −a9 −a12 a13 a10


+



0 0 0 0 −b3 b2

0 0 0 b3 0 −b1

0 0 0 −b2 b1 0

0 −b3 b2 0 −b6 b5

b3 0 −b1 b6 0 −b4

−b2 b1 0 −b5 b4 0


.

(4.15)

Where ai terms of the CBRB are given by

a1 = m(yGq+ zGr), a7 = m(zGp− v),
a2 = m(xGq−w), a8 = m(zGq+ u),
a3 = m(xGr+ v), a9 = m(xGp− yGq),
a4 = m(yGp+w), a10 = 0,
a5 = m(zGr+ xGp), a11 = Iyzq+ Ixzp− Izr,
a6 = m(yGr− u), a12 = Iyzr+ Ixyp− Iyq,
a13 = Ixzr+ Ixyq− Ixp,

and bi terms of the CBA are defined as

b3 = Xẇu+ Yẇv+Zẇw+Zṗp+Zq̇q+Zṙr,
b2 = Xv̇u+ Yv̇v+ Yẇw+ Yṗp+ Yq̇q+ Yṙr,
b1 = Xu̇u+Xv̇v+Xẇw+Xṗp+Xq̇q+Xṙr,
b4 = Xṗu+ Yṗv+Zṗw+Kṗp+Kq̇q+Kṙr,
b5 = Xq̇u+ Yq̇v+Zq̇w+Kq̇p+Mq̇q+Mṙr,
b6 = Xṙu+ Yṙv+Zṙw+Kṙp+Mṙq+Nṙr.
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Here (u v w p q r) is the linear and angular velocity vec-
tor. Again, assumptions of Section 4.1.1 give us a simple
expression for CBRB and CBA, hence CB is defined as

CB =



0 0 0 0 mw −mv

0 0 0 −mw 0 mu

0 0 0 mv −mu 0

0 mw −mv 0 Izzr −Iyyq

0 0 0 −Izzr 0 Ixxp

0 0 0 Iyyq −Ixxp 0


+



0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


.

(4.16)

With all the equation terms clear, the next section uncouples
the model and describes the LS identification method taken
for a particular DoF.

4.2 decoupled model

During the identification procedure, the vehicle will be ac-
tuated in a single DoF. After all the simplifications proposed
in Section 4.1.1 are applied to Equation 4.1, the resultant
dynamic equation for one DoF, the X movement in this case,
can be conveniently expressed in the fixed body frame {B}

as

X− (Xu +Xu|u||u|)u+ τpx =

(m−Xu̇)u̇+ (m−Zẇ)wq− (m− Yv̇)vr.
(4.17)

Since the vehicle will perform decoupled movements dur-
ing the identification process, Coriolis terms can be dis-
carded. Hence, the final dynamic equation for the X DoF
can be obtained as

X− (Xu +Xu|u||u|)u+ τpx = (m−Xu̇)u̇. (4.18)
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By isolating the acceleration we obtain

1

(m−Xu̇)
(X−Xu̇u−Xu|u|u|u|+ τpx) = u̇. (4.19)

If we assume that

α = − Xu
(m−Xu̇)

,

β = −
Xu|u|

(m−Xu̇)
,

γ = + 1
(m−Xu̇)

,

δ = +
τp

(m−Xu̇)
,

(4.20)

we can give the decoupled equation as

u̇ = αu+βu|u|+ γX+ δ. (4.21)

The same procedure can be applied to each DoF. Therefore,
a generic decoupled equation of motion for the i-degree
can be considered as

ẋi = αixi +βixi|xi|+ γiτi + δi. (4.22)

Identification becomes easier if Equation 4.22 is used. The
variable x represents speed and τ the force or moment for a
particular DoF. The same procedure can be applied to each
DoF. By running decoupled experiments, αi, βi, γi and δi
can be estimated by means of LS techniques. Then, as the
mass m of the vehicle is known since it has been measured
off-line, the physical parameters Xu, Xu|u|, Xu̇ and τp can
be easily extracted as shown in Equation 4.20. Note that
these are the unknown parameters of the coupled equa-
tion of motion. Hence, although a decoupled experiment
is being run, the whole model can be estimated. Details
of the LS identification algorithm, the procedures and the
identification results are given in the next sections.

4.3 identification methodology

Identification methods based on discrete-time models [82]
have been extensively used in the area of engineering ap-
plications, owing to the fact that the related algorithms can
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be easily implemented. It is worth noting, however, that in
applications involving the identification of an intrinsically
continuous-time physical system, such as an AUV, it is gen-
erally preferable to use a continuous-time method. In fact,
given a model described by a set of differential equations,
it is more direct and much easier to use that directly into
an identification algorithm rather than using an intermedi-
ate discrete-time form, that can sometimes be error prone.
It is also important to note that a continuous time model
has a global validity in the sense that it can be used for
generating a variety of discrete-time models to be applied
to the design of control or fault detection systems by sim-
ply selecting a suitable sampling interval. The LS method
used for the model identification of Ictineu AUV is based on
the integral of the dynamics equations. The transformation
of differential equations into integral equations is used to
provide a better numerical performance of the LS estima-
tion algorithm. Let us consider the dynamics Equation 4.22

which can be rewritten as follows

ẋi =
[
xi xi|xi| τi ηi

]

αi

βi

γi

δi

+ εi. (4.23)

As can be easily recognized, the AUV decoupled dynamics,
as expressed by Equation 4.23, is a particular case of a
more general class of non-linear systems that are linear
with respect to the system’s parameter vector. The system’s
dynamics can be expressed by

ẋ(t) = φ(x(t), τ(t))θ+ ε(t),
y(tk) = x(tk) + e(tk),

(4.24)

where φ ∈ Rn×l, n being the number of measurements
and l the number of parameters to identify, is a matrix
valued function depending only on state and control vectors,
while θ ∈ Rl is a constant and unknown parameter vector
that characterizes the system’s dynamics. The identification
problem consists of estimating the unknown parameter
vector θ according to the output prediction error method
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[82]. Identification of parameter vector θ is equivalent to
the minimization of a scalar cost function

J(θ) =
1

2

n∑
k=1

εT (tk)W
−1(tk)ε(tk). (4.25)

The cost function is made up of a weighted sum of squares
of prediction errors ε(tk), which are the difference between
the observed output y(tk) and the one-step prediction of
the output ŷ(tk) where the error is given by

ε(tk) = y(tk) − ŷ(tk). (4.26)

The positive definite matrices {W−1(tk)}
n
k=1 consist of weights

that should take into account the reliability of measure-
ments at each discrete time instant. If the measurement
noise vector ε(tk) is zero-mean, then

ŷ(tk) = x̂(tk), (4.27)

where x̂(tk) denotes the expected state vector at time tk. In
order to determine a solution to the minimization of the cost
function expressed by Equation 4.25, it is necessary that an
estimate of the one-step predicted output ŷ(tk) is available.
For this purpose, let us formally integrate both sides of the
state equation in Equation 4.24 with two subsequent time
instants tk−1 and tk obtaining

x(tk) − x(tk−1) = [

∫ tk
tk−1

φ(x(s), τ(s))δs]θ. (4.28)

If, taking into account Equation 4.27, it is assumed that
x(tk−1) = ỹ(tk−1), where ỹ(tk−1) is a properly filtered ver-
sion of the output vector y(tk−1), i.e. if we assign to the
unknown state vector a corresponding filtered output, then
we obtain the following estimate for the state vector at time
tk,

x̂(tk) = ỹ(tk−1) + Fkθ,
Fk =

∫tk
tk−1

φ((̂x)(s), τ(s))δs.
(4.29)
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Thus, the one-step prediction error of Equation 4.26 can be
computed as

ε(tk) = ỹ(tk) − ỹ(tk−1) − Fkθ. (4.30)

As far as the considered AUV dynamics has been taken into
account, it has been found out that a simple low pass filter
was adequate enough to remove the noise measurement
errors. By reordering Equation 4.30, we have

ỹ(tk) − ỹ(tk−1) = Fk · θ+ ε(tk),
x̃1 − x̃0

x̃2 − x̃1

...
x̃n − x̃n−1

 =


∫t1
t0
x̃δt

∫t1
t0
x̃|x̃|δt

∫t1
t0
τδt

∫t1
t0
δt∫t2

t1
x̃δt

∫t2
t1
x̃|x̃|δt

∫t2
t1
τδt

∫t2
t1
δt

... ... ... ...∫tn
tn−1

x̃δt
∫tn
tn−1

x̃|x̃|δt
∫tn
tn−1

τδt
∫tn
tn−1

δt



α

β

γ

δ



+


ε1

ε2

...
εn

 .

(4.31)

A linear equation in the vector of unknowns is obtained.
Using the above equation, the LS estimation techniques [82]
can be applied to estimate the vector of unknowns θ and
the related estimation error covariance matrix through the
application of the following equations

θLS = (FT ·W−1 · F)−1 · FT ·W−1 · Y,
P(θ) = (FT ·W−1 · F)−1.

(4.32)

The next section describes the experimental identification
process used for each of the identified DoFs.
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Figure 16: Example STEP input used for the identification of the
Yaw DoF.

4.4 identification process and results

The identification method was carried out with real data
measured with Ictineu AUV. The number of DoFs required
to perform an underwater cable tracking task, like the one
described in this thesis, is 3: Surge (movement along the
vehicle’s X axis), Sway (movement along the vehicle’s Y
axis) and Yaw (rotation around the vehicle’s Z axis). Also,
following the cable at different distances from the seabed
requires the Heave DoF (movement along the vehicle’s Z
axis) to be identified but, as will be explained later, the
shape of the vehicle suggests that the Sway parameters
can also be used for the Heave. The next lines describe the
identification process carried out and the results obtained
for each identified DoF.

4.4.1 Phase 1: Decoupled experiments

The underwater robot Ictineu AUV is actuated in a single
DoF through several independent tests for each DoF that has
to be identified. During each test, all the navigation data
measured by the sensors (position, velocity and acceleration
in the 6 DoFs) as well as the input setpoints is recorded in
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Table 2: Parameter identification results.

Parameters
DoF DL MB

A τp

X 10,974 N/(m/s) 26,472 Kg 0,326 N

Y 12,286 N/(m/s) 29,235 Kg -0,033 N

N 3,183 N/(rad/s) 7,674 Kg.m2 -0,013 N

Mass 55 Kg

B 55 Kg

Izz 4,583 Kg.m2

log files. The setpoints signals used to actuate the robot
are STEP signals of different lengths and amplitudes. The
objective of this initial phase is to generate a rich data
set of values around the robot’s working point, insuring
that the final identified model approximates the vehicle’s
dynamics over a wide range around this point. Figure 16

shows an example of a multi STEP input used in one of the
identification tests.

4.4.2 Phase 2: Data validation

Here we aim to discard bad experiments, or at least part
of them, such as when the force exerted by the umbilical
cable cannot be ignored. In order to assume a decoupled
identification, we must be sure that speeds in the rest of
the DoFs are zero or almost zero. For this purpose, the
data set from the experiments performed in Phase 1 is
plotted and analyzed, eliminating all those tests which do
not accomplish all the previously specified conditions.

4.4.3 Phase 3: Filtering

To reduce the effects of measurement noise, the data was
filtered. Position and force were filtered using a Hamming
filter and the velocity was computed through position dif-
ferentiation by means of a Savitzky-Golay filter [136]. The
acceleration was computed through velocity differentiation
using a Savitzky-Golay filter as well. Once we got the ve-
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Figure 17: Velocity and position response for the Surge DoF.

locity, we integrated this signal and compared it with the
original position to be sure that the signals obtained with
the filter were not delayed.

4.4.4 Phase 4: Off-line model identification

At this point, a final data set has been collected for each
DoF that has to be identified. Therefore, the identification
methodology described in Section 4.3 is followed to estimate
the model parameters of Ictineu AUV.

4.4.5 Phase 5: Test selection and mean values

From the previous phase, outliers in the experiments are
detected and discarded. The results from the best ones are
averaged to get the final values for the estimation. The
identified parameters for Ictineu AUV can be seen in Table 2.
Parameters for the Surge, Sway and Yaw are the mean of
the results for the validated experiments. Note that the
quadratic damping term DQ has been ignored due to the
low speeds achieved by Ictineu AUV during the tests, <
0.5m/s. The Heave DoF (movement around the vehicle’s Z
axis) has not been identified, nevertheless, due to the square
shape of the vehicle, Heave is assumed to behave like the
Sway DoF.
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Figure 18: Velocity and position response for the Sway DoF.

4.4.6 Phase 6: Simulation

The final identified model is used to simulate some true
experiments. The real and simulated results, when the real
system and the model are subject to the same initial condi-
tions and control inputs, are plotted for comparison. Thus,
the same sample setpoint input is used first on the real ve-
hicle and then on the simulator while measurements of the
velocity and position are extracted. Figure 17 shows the re-
sults obtained with the final identified model for the Surge
DoF. The graph depicts the long-term simulation capability
of the model with respect to the real measured values of
velocity and position. As can be seen in the bottom image of
Figure 17, as time goes on, the simulated position diverges
with respect to the real measured one. At the end of the
test (around 80 seconds), the difference between both po-
sitions is less than 30cm. On the other hand, as illustrated
in the top image of Figure 17 representing the real and
the simulated velocity, these ones stay very close to each
other during the whole test. These results correspond to the
expected ones, since the identification method performs an
LS error minimization with respect to the velocity and not
the position. The results for the Sway and Yaw DoFs are also
depicted in Figure 18 and Figure 19. The results for these
DoFs are better than those obtained with the Surge DoF. The
difference of the final position of the model with respect
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Figure 19: Velocity and position response for the Yaw DoF.

to the real values is very small compared to the difference
experienced by the Surge. The main reason for such a dif-
ference in the results is the fact that the range of velocities
used to identify the Surge DoF has more amplitude, since
the robot moves faster in Surge, than the ranges used for
Sway and Yaw. As the ranges move away from the working
point, the accuracy of the model falls for a particular test.





5
E X P E R I M E N TA L S E T U P

The purpose of this chapter is to report the main characteris-
tics of the different elements used to build the experimental
setup. First, the most notable features of the Ictineu AUV
are given. These include the design principles, the actuators
and the on board sensors. An insight of the control architec-
ture of the robot is given next. As stated in Section 3.2, the
RL algorithms chosen to carry out the tests are implemented
as behaviors inside this architecture. Also, the problem of
underwater pipeline/cable tracking is detailed. Different
common approaches to carrying out this task are discussed
and among them the one selected to carry out the exper-
iments of this thesis, a vision based system, is especially
analyzed. The algorithm used to estimate the position and
orientation of the cable within the image plane is presented.
Finally, the Computer Vision and Robotics Group facility
CIRS where all the tests have been performed is also de-
scribed at the end of this chapter. The correct operation
of all these systems in real-time computation allows the
experimentation and, therefore, the evaluation of the pro-
posed RL algorithms for the particular task of autonomous
underwater cable tracking.

5.1 ictineu auv

This section describes the Ictineu AUV (see Figure 20), the
research vehicle built at the VICOROB of the University of
Girona which constitutes the experimental platform of this
thesis. Its name is a tribute to the Catalan engineer Narcís
Monturiol (1819− 1885). He was the inventor of the first
combustion engine-driven submarine, Ictineu, which was
propelled by an early form of air-independent propulsion.

The Ictineu AUV is the result of a project started in 2006.
During the summer of that year, the Defence Science and
Technology Lab (DSTL), the Heriot-Watt University and
the National Oceanographic Center of Southampton orga-
nized the first Student Autonomous Underwater Challenge
Europe (SAUCE), a European wide competition for students
to foster research and development in underwater technol-

101
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Figure 20: Ictineu AUV weight and dimensions.

ogy. The Ictineu AUV was originally conceived as an entry
for the SAUCE competition by a team of students collabo-
rating with the VICOROB [124]. Although the competition
determined many of the vehicle’s specifications, Ictineu
was also designed keeping in mind its posterior use as an
experimental platform for various research projects in our
laboratory. The experience obtained from the development
of previous vehicles by the group, Garbi ROV [8], Uris [22]
and Garbi AUV, made it possible to build a low-cost vehi-
cle of reduced weight (52 Kg) and dimensions (74 x 46.5
x 52.4 cm) with remarkable sensorial capabilities and easy
maintenance.

The Ictineu AUV was conceived using a typical open
frame design. This configuration has been widely adopted
by commercial ROVs because of its simplicity, toughness and
reduced cost. Although the hydrodynamics of open frame
vehicles is known to be less efficient than that of closed hull
vehicles, they are suitable for applications not requiring
movements at high velocities or traveling long distances.
The robot’s chassis is made of Delrin, an engineering plas-
tic material which is lightweight, durable and resistant to
liquids. Another aspect of the design is the modular con-
ception of its components which simplifies upgrading the
vehicle and makes it easier to carry out maintenance tasks.
Some of the modules (the thrusters and the major part of
the sensors) are watertight and therefore, are mounted di-
rectly onto the vehicle’s chassis. On the other hand, two
cylindrical pressure containers made of aluminum house
the power and computer modules while a smaller one made
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of Delrin contains the Motion Reference Unit (MRU). Their
end caps are sealed with conventional O-ring closures while
the electrical connections with other hulls or external sen-
sors are made with plastic cable glands sealed with epoxy
resin. The Ictineu is propelled by six thrusters that allow it
to be fully actuated in Surge (movement along the X axis),
Sway (movement along the Y axis), Heave (movement along
the Z axis) and Yaw (rotation around the Z axis) achieving
maximum speeds of 3 knots. The Ictineu AUV is passively
stable in both pitch and roll DoFs as its center of buoyancy is
above the center of gravity. This stability is the result of an
accurate distribution of the heavier elements in the lower
part of the chassis combined with the effect of technical
foam placed on the top, which provides a slightly positive
buoyancy.

One of the main objectives of the laboratory was to pro-
vide the underwater robot with a complete sensor suite.
This sensor suite was created adding new sensors to cor-
rect some limitations of the old prototypes. The robot in-
cludes a Tritech Miniking Mechanically Scanned Imaging
Sonar (MSIS) designed for use in underwater applications
such as obstacle avoidance and target recognition. Also, the
robot is equipped with a SonTek Argonaut Doppler Veloc-
ity Log (DVL) especially designed for applications which
measure ocean currents, vehicle speed over ground and
altimetry using a precise 3-axis measurement system. The
particular spatial distribution chosen to place the acoustic
sensors within the vehicle frame to avoid dead zones im-
prove their overall performance. Moreover, the Ictineu AUV
has a compass which outputs the sensor heading (angle
with respect to the magnetic north), a pressure sensor for
water column pressure measurements and a Xsens MTi
low cost miniature MRU which provides a 3D orientation
(attitude and heading), 3D rate of turn as well as 3D accel-
eration measurements. Finally, the robot is equipped with
two cameras. The first is a forward-looking color camera
mounted on the front of the vehicle and is intended for
target detection and tracking, inspection of underwater
structures and to provide visual feedback when operating
the vehicle in ROV mode. The second camera is a Tritech
Super SeaSpy colour Charge Coupled Device (CCD) Under-
water Camera, located in the lower part of the vehicle and
downward-looking. This camera is mainly used to capture
images of the seabed for research on image mosaicking.
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Figure 21: Ictineu AUV during a mission in a real environment.

The downward-looking camera is the main sensor used for
the experiments developed in this dissertation. Nowadays,
the Ictineu AUV is being used as a research platform for dif-
ferent underwater inspection projects which include dams,
harbors, shallow waters and cable/pipeline inspection (see
Figure 21).

5.2 the o2ca2 control architecture

The O2CA2 Control Architecture was first proposed in
[126] with the aim of developing a control strategy for an
autonomous vehicle. Nowadays, an evolution of that con-
trol architecture can be found in all the operating vehicles
of the VICOROB, including the Ictineu AUV. The control
architecture has the task of guaranteeing the robot’s func-
tionality. The real-time POSIX, together with the ACE/TAO
CORBA-RT ORB, have been extensively used to develop the
architecture as a set of distributed objects with soft real time
capabilities. These objects are distributed between the two
onboard PCs and, when operating in tethered mode, the
external PC. The architecture is composed of a base system
and a set of objects customized for each particular robot,
which makes possible the sharing of the same software ar-
chitecture with all the vehicles in the laboratory. There are
classes providing soft real-time capabilities that guarantee
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Figure 22: Schematic of the Ictineu AUV control architecture.

the period of execution of the periodic tasks such as the
controllers or the sensors. Another important part of the
base systems are the loggers. A logger system is used to log
data from sensors, actuators or any other object component.
Loggers do not execute in real time, they are background
processes which receive the data from real time objects.
Their role consists of packing the data and saving them into
files. It is worth noting that, although loggers do not run in
real time, the data has a time-stamp corresponding to the
gather time. Moreover, all the computers in the network are
synchronized by means of the Network Time Protocol (NTP)
and hence, all the data coming from different sensors can
be time related. The software architecture is divided into
three modules as represented in Figure 22: interface module,
perception module and control module.

5.2.1 Interface Module

This is the only module containing software objects which
dialog with the hardware. There are basically two types of
objects: sensor objects responsible for reading data from
sensors and actuator objects responsible for sending com-
mands to the actuators. As detailed in Section 5.1, sensor
objects for the Ictineu AUV include a DVL, an imaging sonar,
a MRU, two cameras and a depth sensor. There are also
objects for the safety sensors like water leakage detectors
and internal temperature and pressure sensors that allow
for the monitoring of the conditions within the pressurized
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containers. Actuator objects for the Ictineu AUV include the
thrusters.

5.2.2 Perception Module

This module contains two basic components: the navigator
and the obstacle detector. The navigator has the goal of esti-
mating the position of the robot. To accomplish this task,
there is an interface called navigation sensor from which all
the localization sensors (DVL, MRU and depth sensor) inherit.
This interface provides all these sensors with a set of meth-
ods to return the position, velocity and acceleration in the 6

DoF together with an estimation of the quality of these mea-
surements. The navigator can be dynamically connected to
any navigation sensor and, using the quality factor, fuses
the data to obtain a more accurate position, velocity and
acceleration. The control module uses the navigation data
provided by the navigator keeping the behaviors indepen-
dent of the physical sensors being used for the localization.
The obstacle detector uses the same philosophy to provide
obstacle position in the fixed world frame. The obstacle de-
tector is also used to detect the distance between the vehicle
and the bottom of the pool. Detecting frontal obstacles is
possible using the the imaging sonar while pool bottom
obstacles can be detected by means of the DVL sensor.

5.2.3 Control Module

The control module receives sensor inputs from the per-
ception module. This sensory information is driven into
the active behaviors and each one generates a response.
The coordinator mixes all the responses with its respective
priorities and sends command outputs to the actuators re-
siding in the interface module. Since task and behavior are
words that can be interpreted in different ways depending
on the authors in the literature, here we describe how they
are interpreted within this thesis. A behavior is a function
that maps the sensor input space, stimuli, into a set point
(reference point for the controller) behavior response, for the
robot’s low level controller. The behavior response is chosen
in a way that drives the robot towards its corresponding
goal. As an example, the goal corresponding to the Keep-
Depth behavior is considered to be achieved when the robot
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is within an interval around the desired depth. On the other
hand, a task is a set of behaviors that are enabled/disabled
together to achieve a more complex goal. For instance, Keep-
Depth and FollowCable can work together to allow for planar
navigation while following a submerged cable at a constant
depth. The control module follows the principles of the
hybrid control architectures, described in Section 3.1, orga-
nized in three layers: vehicle level, task level and mission
level.

vehicle level. This level is composed of a Multiple-
Input-Multiple-Output (MIMO) Proportional-Integral-
Derivative Controller (PID) for each DoF. This object
reads the vehicle’s velocity from the navigator and
sends the velocity setpoints to the coordinator. This
level also includes a simple control allocator strategy
based on the pseudo inverse of the thruster configura-
tion matrix [47].

task level. The task level is a conventional behavioral
layer which includes a library of behaviors that can
run alone or in parallel. Each behavior has a partic-
ular goal. The input of a behavior comes from the
perception module. As output, the behavior response
contains the setpoints and the activation level for every
DoF. Also, the behavior response contains an integer
term which gives a priority for each of the active be-
haviors. During the execution of a mission, more than
one behavior can be enabled simultaneously. Hence, a
coordinator module is used to fuse all the responses
corresponding to the enabled behaviors into a sin-
gle response to be sent to the low level controller
located at the vehicle level. The coordinator output,
after combining all the active behaviors, is a vector
as large as the number of the robot’s DoFs [112]. The
RL-based behaviors proposed in this thesis have been
programmed at this level.

mission level. The mission level is responsible for the
sequencing of the mission tasks, selecting for each mis-
sion phase the set of behaviors that must be enabled.
The mission controller is built with a Petri network
[103] in which the sequence of tasks is defined. Since
the vehicle can move in an unstructured environment,
unexpected situations have to be taken into account
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by the mission designer. A Petri network is made up
of nodes which can be active or not active. In the Petri
network developed for the Ictineu AUV [36], each node
represents a behavior with a particular configuration
to be executed on the task controller. A library of
behaviors is used to define a mission. Each one has
a simple goal such as move to point, keep depth, search
a target or follow a cable. Therefore, the mission con-
troller has the work of defining the task that the robot
is accomplishing at each moment by activating or de-
activating behaviors with the final goal of fulfilling the
mission. The mission controller does not determine
the actions that guide the robot, it only determines
the active behaviors and their configuration which,
through the task controller, will be coordinated to
guide the robot.

Section 5.1 and Section 5.2 have described the hardware
and software elements which compose the Ictineu AUV.
Since its creation, the vehicle has experienced extensive
usage in many different research fields. It has proved to be
a very reliable platform, requiring only minor maintenance
tasks. We expect the Ictineu AUV to become a reference for
all the future prototypes developed in our laboratory.

5.3 cable tracking in underwater environments

Nowadays, oil companies have a huge net of pipes spread
under the oceans. Most offshore platforms are located on
the continental shelf, though with advances in technology
and increasing crude oil prices, drilling and production in
deeper waters has become both feasible and economically
viable. Also, power transmission and communications com-
panies share the same problems for their cable lines. Wired
communications are possible thanks to cables properly de-
signed which, during a costly deployment, are laid out over
the seabed. Due to the particularly aggressive conditions
to which these cables are exposed, the feasibility of such
installations can only be guaranteed by means of a suitable
inspection programme. It must provide timely information
on the current state of the installation or about potentially
hazardous situations or damages caused by the movement
of the seabed, corrosion, or human activities such as ma-
rine traffic or fishing [62] [168]. The use of professional
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Figure 23: Ictineu AUV during experimental tests at CIRS facility.

divers for the inspection and maintenance of underwater
cables/pipelines is limited by depth and time. Also, a man-
ual visual control is a very tedious job and tends to fail if
the operator loses concentration. ROVs represent an alter-
native to human operators. The main drawback of using
ROVs for surveillance missions resides in the cost, since it
increases rapidly with depth because of the requirements
for longer umbilicals and a support ship. All these reasons
point towards AUVs as an alternative solution for such mis-
sions. An AUV can be deployed from the coast without the
help of a ship, perform the whole tracking mission by itself
gathering all useful data from sensors and surface at the
desired location for recovery.

Several systems have been developed for underwater ca-
ble/pipeline inspection purposes. Basically, the technology
applied classifies the methodologies in three large groups
depending on the sensing device used for tracking the
cable/pipeline: magnetometers, sonar and vision based
methods. Magnetometer systems are limited to tracking
metallic or electric lines. A magnetometer is a measurement
instrument used to measure the strength and/or direc-
tion of the magnetic field in the vicinity of the instrument.
With the installation of a magnetometer, an AUV can detect
the magnetic field induced by a cable, calculate its posi-
tion and follow it. The main drawback of this technique
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is the low accuracy of the measurements caused by mis-
alignment of the magnetic sensor’s axes, waving of laid
cables and magnetic noise. The advantage is that these
methods can detect the cable even if it is buried below the
seabed and no artificial illumination is required. Some re-
sults with magnetometers can be found in [63, 14]. Over
the last decade, sonar-based technologies have received a
lot of interest due to the great advances in the field. For
cable/pipeline tracking purposes, most of the experimental
results obtained with sonar-based methods combine two
kind of sensors: multibeam echo sounders and sidescan sonars.
A multibeam echo sounder is a sensor specifically designed
to produce bathymetric maps of large areas of the seabed. It
is composed of an array of hydrophones which can emit fan
shaped beams towards the bottom and measure the range
of a strip of points placed perpendicularly to the direction
of the vehicle’s movement. A sidescan sonar allows large
areas of the seabed to be searched quickly by producing
acoustic images. Its mode of operation is similar to that of
multibeam echo sounders, but oriented to imaging tasks.
While the sonar moves along a survey path, it emits fan
shaped pulses down towards the seabed over a wide angle
perpendicular to the direction of the movement, producing
a strip of echo intensity measurements. Initially, the ca-
ble/pileline is located from a high altitude over the seabed
using the sidescan sonar and, once it has been detected, it
is tracked at low altitude by means of the multibeam echo
sounder. Sonar systems can operate with no illumination
and the accuracy and resolution of the measurements ob-
tained with the multibeam echo sounder is very high. As
a disadvantage, sidescan sonar images are generally very
noisy, making analysis of the raw image very difficult. To
overcome this, some data pre-processing is required. Some
results with sonar-based systems can be found in [44, 64].

Vision based systems represent a good alternative to
sonar methods. Although sonar sensors are becoming smaller
and require less power to operate, vision cameras, apart
from being a passive sensor, provide far more information
with a larger frequency update, are inexpensive, much less
voluminous and can be powered with only a few watts. LED
technology is also contributing to reducing the size of the
lighting infrastructure and the related power needs, which
also matters in this case. For performing a camera vision-
based tracking, the AUV control architecture must command
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Figure 24: The Tritech Super SeaSpy camera used by the vision
system to track the pipe/cable.

the vehicle to travel over the cable/pipeline, which leads to
the frame by frame tracking of the position and the orienta-
tion of the cable/pipeline. Over the last few years, several
research groups have showed the suitability of vision cam-
eras as a short range sensor for underwater environments
either for navigation or for mission tasks [111, 19]. For the
final experiments of this dissertation, a vision-based system
developed at the University of the Balearic islands has been
chosen to track a submerged cable in a controlled envi-
ronment. The VICOROB laboratory has been collaborating
with the Computer Science and Mathematics Department
of the University of the Balearic Islands in several National
and European projects for years, obtaining successful re-
sults. All the tests have been carried out in the Computer
Vision and Robotics Group facility, CIRS, at the University
of Girona. Although the conditions in the pool are far from
real undersea conditions, it allows comprehensive testing
by a single operator and represents a unique opportunity
to test RL methods in underwater conditions (Figure 23).
The next section gives details of the vision system used and
the procedures to obtain the position and orientation of the
cable.
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Figure 25: Coordinates of the target cable with respect to the
Ictineu AUV.

5.4 the cable tracking vision-based system

The Tritech Super SeaSpy colour CCD downward-looking
camera installed on the Ictineu AUV will be used for the vi-
sion algorithm to track the cable. The camera has integrated
white ring Light-Emitting Diodes (LEDs) providing uniform
illumination across the viewing area. A feedback loop auto-
matically adjusts the lighting level so that optimum picture
quality is achieved, regardless of the reflectivity of the work
surfaces. This integral lighting provides an underwater cam-
era that is well suited for close proximity inspection work
where little or no lighting is available. The camera has in-
ternal focus adjustment that allows the focal range to be set
between 50mm and infinity with a diagonal field of view
of 70 degrees (see Figure 24). This sensor does not provide
us with absolute localization but it gives us relative infor-
mation about the position and orientation of a particular
object with respect to our vehicle: if we are too close/far or
if we should move to the left/right in order to center the
object in our image plane.
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Figure 26: Ictineu AUV in the test pool. Small bottom-right image:
Detected cable.

The vision-based algorithm used to locate the cable was
first proposed in [110] and later improved in [10]. It exploits
the fact that artificial objects present in natural environ-
ments usually have distinguishing features; in the case of a
pipe or a cable, given its rigidity and shape, strong align-
ments can be expected near its sides. In order to obtain the
pipe/cable parameters, an optimized segmentation step is
executed. Given the contours of the resultant regions, align-
ments of contour pixels are determined. If among those
alignments there is strong evidence of the location of the
cable (mainly two alignments with a great number of pix-
els lined up and with a high degree of parallelism, even
without discounting the perspective effect), then the cable is
considered to have been located and its parameters are com-
puted. Otherwise, the image is discarded and the next one
is analyzed. Once the cable has been detected, its location
and orientation in the next image are predicted by means
of a Kalman filter, which allows reducing the pixels to be
processed to a small Region of Interest (ROI). In this way, the
computation time is considerably lowered together with the
probability of misinterpretations of similar features appear-
ing in the image. If low or nil evidence of the pipe/cable
presence in the ROI is obtained, a transient failure counter
is increased after discarding the image. If this anomalous



114 experimental setup

situation continues throughout too many images, then it is
attributed to a failure in the prediction of the ROI, resulting
in two special actions: the Kalman filter is reset and the ROI
is widened to the whole image. In other words, when faced
with a persistent error, the system will no longer make use
of the knowledge acquired from the last processed images.

As can be seen in Figure 25, the algorithm computes the
polar coordinates (ρ, Θ) of the straight line correspondingρ: orthogonal

distance between
the origin of the

image frame and the
cable line. Θ: angle

between X axis of
the image frame and

the orthogonal line
passing through the
origin of the image

frame.

to the detected cable in the image plane, (ρ, Θ) being the
parameters of the cable line, the cartesian coordinates (x,y)
of any point along the line must satisfy

ρ = xcos(Θ) + ysin(Θ). (5.1)

As shown in Figure 25, Equation (5.1) allows us to ob-
tain the coordinates of the cable intersections with the im-
age boundaries (Xu,Yu) and (XL,YL), thus the mid point of
the straight line (xg,yg) can be easily computed (xg,yg =
XL+Xu
2 ,Yu+YL2 ). The computed parameters (ρ,Θ, xg,yg) to-

gether with its derivatives are sent to the control module in
order to be used by the various behaviors. Figure 26 shows
a real image of the Ictineu AUV while detecting a cable.
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R E S U LT S

This chapter presents the experimental results of this thesis.
The results are organized in a series of sections which in-
tend to show the experimental progression carried out with
the various algorithms proposed, using them to solve some
well known RL benchmarks and specific underwater tasks.
In the first section, a comparison of a VF method and a PG
technique is presented. This section compares and analyzes
the results obtained by QL and GPOMDP algorithms when
trying to solve a common benchmark; the mountain-car
problem. In the second section, GPOMDP, demonstrating
a better performance than the QL, is tested in a specific
simulation. This time, the PG method is programmed using
different function approximators to deal with a simulated
underwater cable tracking task. The model of the under-
water robot Ictineu AUV identified in Section 4 is used by
the simulator together with a simulated underwater world.
At this point, the results obtained, although being quite
good, suggest a search for faster PG algorithms. Therefore,
the third section compares the GPOMDP algorithm with an
AC; the NAC. This section compares both algorithms when
trying to solve another famous benchmark, the cartpole
balancing problem. Finally, with the evidence of the results
pointing to the NAC as the most suitable algorithm for the
kind of underwater tasks presented in this dissertation,
the NAC algorithm faces the final experiments. The robot
Ictineu AUV performs a real cable tracking task at the CIRS
facility. The final experiments presented in this thesis aim
to reduce the convergence time of an AC algorithm like NAC
combining it with one of the speed up techniques discussed
in Section 3.6. The idea is to build a fast, initial policy us-
ing a computer simulator which contains an approximation
model of the environment for, in the second step, transfer to
the Ictineu AUV robot and continuing the learning on-line.

6.1 vf versus pg, the mountain-car problem

This section presents a comparison of a VF method and a PG
algorithm in the mountain-car benchmark. This simulated
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Figure 27: The mountain-car task domain.

problem is well known by the RL research community as a
convenient benchmark to test the convergence and general-
ization capabilities of an RL algorithm. The mountain-car
benchmark is not a continuous task like a robot behavior,
but an episodic task. Moreover, contrary to a robot behav-
ior, the environment is completely observable and without
noise. Hence, this task is highly suitable to test the general-
ization capabilities of both approaches. The VF method used
for these initial experiments is the tabular QL described in
Section 2.5.2. The PG method used is the GPOMDP approach
described in Section 3.4. This section first describes the
"mountain-car" task, then the QL algorithm is applied to
the problem. After showing the performance of the QL, the
GPOMDP is applied to the same task. Finally, a comparison
of the performance of both approaches is given.

6.1.1 The Mountain-Car task definition

The mountain-car task [99, 141] was designed to evaluate
the convergence and generalization capabilities of RL al-
gorithms. In this problem, a car has to reach the top of
a hill. However, the car is not powerful enough to drive
straight to the goal. Instead, it must first reverse up the
opposite slope in order to accelerate, acquiring enough mo-
mentum to reach the goal. The state of the environment is
represented by a two-dimensional vector containing two
continuous variables; the position p and the velocity v of
the car. The bounds of these variables are −1.2 6 p 6 0.5
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and −0.07 6 v 6 0.07. Action a is a discrete variable with
three values {−1, 0,+1}, which correspond to reverse thrust,
no thrust and forward thrust respectively. The mountain ge-
ography is described by the equation: altitude = sin(3p).
Figure 27 shows the mountain-car scenario. The dynamics
of the environment, which determines the state evolution,
is defined by these two equations

vt+1 = bound[vt + 0.001 at − 0.0025 cos(3 pt)], (6.1)

and

pt+1 = bound[pt + vt+1], (6.2)

in which the bound operation maintains each variable within
its allowed range. If pt+1 is smaller than its lower bound,
then vt+1 is reset to zero. On the other hand, if pt+1 achieves
its higher bound, the episode finishes since the task is
accomplished. The reward is -1 everywhere except at the
top of the hill, where the reward is 1. New episodes start at
random positions and velocities and run until the goal has
been reached or a maximum of 200 iterations have elapsed.
The optimal state/action mapping to solve the "mountain-
car" task is not trivial since, depending on the position and
the velocity, a forward or reverse action must be applied.

6.1.2 Results obtained with the QL algorithm

For the tabular QL approach, the state space has been finely
discretized, using 180 states for the position and 150 for the
velocity. The action space contained three values {−1, 0,+1}.
Therefore, the Q table has 81000 cells. In order to ensure
exploration, the policy chosen is an ε− greedy one with
ε set to 0.3. The discount factor is set to γ = 0.95 and
the learning rate to α = 0.5, which have been found ex-
perimentally. The experiments have been repeated in 100

independent runs. At the beginning of each run, the Q table
is randomly initialized and the learning procedure starts.
Since the mountain-car task is an episodic task, the learning
is divided into episodes. New episodes start at random
positions and velocities and run until the goal has been
reached or a maximum of 200 iterations have elapsed. The
effectiveness of each episode is measured as the number of
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Figure 28: Average learning curve of the QL algorithm with re-
spect to the number of episodes. Results averaged over
100 independent runs. Efficiency levels of random and
forward policies can be observed.

iterations needed by the current policy to achieve the goal.
Figure 28 shows the learning evolution of the QL algorithm
as a mean of 100 independent runs. The 95% confidence
intervals are also shown. During the first episodes the effi-
ciency is very low, requiring a lot of iterations to reach the
goal. As can be seen, at the end of the learning period, the
average number of iterations needed to reach the goal is
set around 50 iterations. The average number of episodes
needed to achieve this performance is approximately 107

episodes. These results show one of the main disadvantages
of tabular discretization: each state/action pair must be up-
dated several times until a homogeneous policy is obtained,
resulting in a high number of learning iterations.

It is also interesting to compare these results with the
ones obtained with other state/action policies. If a forward
action (a = 1) is always applied, the average episode length
is 86. If a random action is used, the average is 110 (see
Figure 28). These averages depend highly on the fact that
the maximum number of iterations in an episode is 200,
since in many episodes these policies do not fulfill the goal.
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Figure 29: Schematic of the ANN used for the mountain-car task.

6.1.3 Results obtained with the PG algorithm

As mentioned at the beginning of this section, the PG algo-
rithm chosen for this comparison is the GPOMDP. The policy
is approximated by means of a one-hidden-layer ANN with
2 input nodes, 10 hidden nodes and 3 output nodes (see
Figure 29). The state values corresponding to the position
p and the velocity v of the car are the inputs of the net-
work. The activation function chosen for the neurons of the
hidden layer is of the hyperbolic tangent type [58], while the
output layer nodes are linear. To ensure exploration, the two
output neurons have been exponentiated and normalized to
produce a probability distribution. For this purpose, a soft-
max distribution is evaluated for each possible future state
exponentiating the real-valued ANN outputs {o1,o2,o3} [1].

After applying the soft-max function, the outputs of the
neural network give a weighting ki ∈ (0, 1) to each one of
the three possible control actions {−1, 0,+1}. The probability
of selecting the ith control action is then given by:

Pri =
exp(oi)
n∑
z=1

exp(oz)
(6.3)

where n is the number of neurons at the output layer. Ac-
tions have been labeled with the associated control action
and chosen at random from this probability distribution.
The decay factor of the eligibility is set to λ = 0.98 and
the learning rate to α = 0.1, which have been found ex-
perimentally. The experiments have been repeated in 100
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Figure 30: Average learning curve of the PG algorithm with re-
spect to the number of episodes. Results averaged over
100 independent runs. Efficiency levels of random and
forward policies can be observed.

independent runs. At the beginning of each run, the ANN
weights are randomly initialized and the learning proce-
dure starts. Similar to QL experiments, the effectiveness
of each episode is measured as the number of iterations
needed by the current policy to achieve the goal. Figure 30

shows the learning evolution of the GPOMDP algorithm as
a mean of 100 independent runs. The 95% confidence in-
tervals are shown. Also, the effectiveness of random and
forward policies is depicted.

After running 100 independent runs with the PG algo-
rithm, the average number of iterations needed to reach
the goal once the optimal policy is learnt is set around 53

iterations, 3 iterations more than the optimal reached with
the QL method. The average number of episodes needed to
learn this optimal policy is approximately 6x104 episodes, 3

orders of magnitude smaller compared to QL. Observing the
amplitude of the 95% confidence intervals, it is important
to note the high variability along the runs observed when
applying the PG algorithm, especially during the initial
episodes of each run.
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6.1.4 Comparative results

Although the performance of the PG algorithm (average of
53 iterations to goal) is slightly worse than the one obtained
with QL (average of 50 iterations to goal), the convergence
speed of the GPOMDP method is by far superior to the QL
which was heavily affected by the generalization problem.
Whereas the PG algorithm achieves a near optimal policy
in approximately 6x104 episodes, the QL algorithm needs 3

orders of magnitude more to reach similar results, around
107 episodes. In the PG approach, the simplicity of the func-
tion approximator chosen to represent the policy is one of
its main advantages. A very simple one-hidden-layer ANN
configuration with 2 input nodes, 10 hidden nodes and 3

output nodes stores 50 weights. Adding the eligibility trace
parameter for each weight, the low total amount of stored
data of the algorithm is equal to 100 parameters, which
compared to the 81000 cells required by the QL represents
a huge difference. The variability of both methods during
the initial episodes of each run is worth some attention.
The QL method learns slowly but with safe steps towards
its optimal policy. As a tabular method, the evolution of
the policy from one episode to another is small, achieving
uniformly higher effectiveness as the learning goes on and,
in the end, obtain an even better policy than the PG. On the
other hand, at the beginning of each run, the PG algorithm
shows big differences between two consecutive episodes,
denoting a highly changing policy which tries to evolve as
fast as possible towards the solution, sometimes at the cost
of not finding it or getting stuck in a local optima.

The initial simulation results obtained in the mountain-
car task encourage more experimentation. A PG technique
like that proposed by Baxter and Bartlett definitely outstrips
the VF algorithm based on the QL proposed by Watkins.
The next section continues with more testing on the PG
algorithm and different function approximators dealing
with a simulation problem of a cable tracking task. The
main objective of this new set of experiments aims to get
one step closer to the real robotic task.



122 results

6.2 pg methods , simulation of a cable tracking

task

This section again presents a simulated application of the
GPOMDP algorithm described in Section 3.4. This time, this
PG technique deals with an underwater cable tracking task.
The simulator has been developed for this thesis with the
aim of having a fast platform for testing RL algorithms for
robotics in structured underwater conditions. The model of
the underwater robot Ictineu AUV identified in Chapter 4

is used in the simulator together with a simulated world
corresponding to the pool where all the tests have been
carried out in the Computer Vision and Robotics Group
facility, CIRS, at the University of Girona (see Section 5.3).
The results presented in this section compare two different
function approximators applied to the same RLP. First, the
policy is approximated using an ANN schema similar to the
one used in previous experiments of Section 6.1.3. Next,
the same RLP is solved using a barycentric interpolator as
the function approximator (see Section 3.3). Comparative
results are shown at the end of the section. The next lines
give a brief description of the simulator.

6.2.1 The Ictineu AUV simulated environment

The model of the underwater robot Ictineu AUV identi-
fied in Chapter 4 is used to simulate an underwater robot
autonomously navigating a two dimensional world at a
predefined constant height above the seafloor. The simu-
lated cable line can be placed at the bottom in any position,
allowing the user to work with different cable curvatures
and thicknesses. A downward-looking camera model has
been used to emulate the vision system of the robot. The
objective of this simulation is to center the cable in the im-
age as fast as possible and follow it at a constant predefined
forward speed. The state of the environment is represented
by a four-dimensional vector containing 4 continuous vari-
ables, (Θ, δΘδt , xg, δxgδt ) where, as can be seen in Figure 31, Θ
is the angle between the Y axis of the image plane and the
cable, xg is the X coordinate of the mid point of the cable
in the image plane and, finally, δΘδt and δxg

δt are Θ and xg
derivatives respectively (see Section 5.4 for more details).
The bounds of these variables are −π

2 rads 6 Θ 6 π
2 rads;
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Figure 31: Reward map for the cable tracking task.

−1rads/s 6 δΘ
δt 6 +1rads/s; −0.539 6 xg 6 0.539 (adimen-

sional bound scaled from the size of the image in pixels)
and −0.5 6 δxg

δt 6 +0.5 (adimensional bound derived from
xg). With this input state, the robot makes decisions con-
cerning two DoFs: the Y movement (Sway) and the Z axis
rotation (Yaw). Therefore, the continuous action vector is
defined as (asway,ayaw) with boundaries −1 6 asway 6 +1

and −1 6 ayaw 6 +1. The X movement or Surge of the
vehicle is not learned. A simple controller has been imple-
mented to control the X DoF; whenever the cable is centered
in the image plane (the cable is located inside the 0 re-
ward boundaries), the robot automatically moves forward
asurge = 0.3m/s. If the cable moves outside the good lim-
its or the robot misses the cable, it stops moving forward
asurge = 0m/s.

Although the cable tracking task can be understood as
a continuous task, for a clear comparison of the results
obtained, the robot has been trained in an episodic task.
At the beginning of an episode, the robot is placed at a
random position and orientation in the vicinity of the cable,
assuring any location of the cable within the image plane.
An episode ends either every 150 iterations or when the
robot loses visual contact with the cable in the image plane.
When an episode ends, the robot position is reset to a
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Figure 32: Example situation of the underwater scenario offered
by the simulator.

random position and orientation with the cable in the image
plane. As can be seen in Figure 31, three discrete values
have been chosen for the rewards: {−10,−1, 0}. A reward
of 0 is given whenever the position and the orientation of
the cable are inside the boundaries −0.15 6 xg 6 +0.15
and −15◦ 6 Θ 6 +15◦. A reward of −1 is given whenever
either the position or the orientation of the cable are in any
other location outside the previous bounds but still in the
image plane. Finally, a reward of −10 is given when the
vehicle misses the target and the episode prematurely ends
before 150 iterations are reached. The next lines present the
results obtained with the different function approximators.
Figure 32 shows the simulated environment scenario.

6.2.2 Results obtained with the ANN in the cable tracking task

The update procedures of a PG algorithm aided by an ANN
as function approximator have been detailed in Section 3.4.1.
For the particular task of cable tracking, the policy is ap-
proximated by means of a one-hidden-layer ANN with 4

input nodes, 3 hidden nodes and 2 output nodes (see Fig-
ure 33). As stated in the previous section, the state values
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Figure 33: Schematic of the ANN used for the simulated cable
tracking task.

corresponding to the position xg and the orientation Θ of
the cable together with its derivatives δxg

δt , δΘδt are the inputs
of the network. The activation function chosen for the neu-
rons of the hidden layer is the hyperbolic tangent [58], while
the output layer nodes are linear. The two output neurons
match the continuous action vector (asway,ayaw) which cor-
responds to each controlled DoF: Sway (Y movement) and
Yaw (Z axis rotation). Both neuron outputs are normalized
with boundaries −1 6 asway 6 +1 and −1 6 ayaw 6 +1.

The learning experiments have been repeated in 100 in-
dependent runs. At the beginning of each run, the ANN
weights are randomly initialized and the learning proce-
dure starts. The effectiveness of each episode is measured
as the total reward per episode perceived by the current
policy. As described in the previous section, an episode
ends either every 150 iterations or when the robot loses
visual contact with the cable in the image plane. When
an episode ends, the robot position is reset to a random
position and orientation with the cable in the image plane.
The decay factor of the eligibility is set to λ = 0.98 and the
learning rate to α = 0.001, which have been found exper-
imentally. Figure 34 shows the learning evolution of the
GPOMDP algorithm using an ANN as function approximator.
These results are the mean of 100 independent runs. The
95% confidence intervals are also shown. For every inde-
pendent run, the maximum number of episodes has been
set to 2000. For every episode, the total amount of reward
perceived is calculated.
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Figure 34: Learning evolution with respect to the number of
episodes of the GPOMDP algorithm with the ANN func-
tion approximator. Results averaged over 100 indepen-
dent runs.

After running 100 independent runs with the ANN ap-
proximator, the average reward per episode once the opti-
mal policy is learnt is set around -12. The average number
of episodes needed to learn this optimal policy is approxi-
mately 103 episodes. These results show a fast convergence
of the algorithm, specially if we compare them to the ones
obtained with the same algorithm in the mountain-car task
(6x104 episodes), denoting that this task is, in simulation,
easier to learn. The next section explains the performance
of the barycentric interpolator approximator on the same
task.

6.2.3 Results obtained with the barycentric interpolator in the
cable tracking task

The update procedures of a PG algorithm aided by a barycen-
tric interpolator as function approximator have been de-
tailed in Section 3.4.2. For the cable tracking task, the ob-
served state is the same used in the previous ANN approach,
a 4 dimension vector (xg,Θ, δxgδt , δΘδt ) corresponding to the
position xg and the orientation Θ of the cable together with
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Figure 35: Barycentric interpolator schema for the Sway policy.

its derivatives δxg
δt , δΘδt . Also, the continuous output vector

of the function are the two control actions, one for each con-
trolled DoF, (asway,ayaw). With the aim of decreasing the
interpolator complexity, the main policy has been split into
two subpolicies, each one represented by a 2-dimension
barycentric interpolator. asway actions cause Y displace-
ments on the robot and, therefore, X displacements on the
image plane. Then, it can be easily noticed that asway ac-
tions directly affect the position of xg along the X axis of the
image plane together with its derivative. In the same way,
ayaw causes rotation around the Z axis and, therefore, Θ
angle variations in the image plane. Although learning un-
coupled policies certainly reduces the overall performance
of the robot, this method greatly reduces the total number
of stored parameters, making it easier to implement.

In Figure 35, the observed values of the state xg and its
derivative δxg

δt are the input for the Sway policy. The output
of this policy is the action asway. In the same way, as can
be seen in Figure 36, the state value Θ and its derivative
δΘ
δt are the input for the Yaw policy, ayaw being its action
output. The state space density of the mesh for both grids
has been experimentally set to 10 equal divisions for each
axis, therefore the mesh for each policy has 100 cells.

In order to obtain comparative results, the learning proce-
dures are identical to those followed with the ANN approach.
This way, the experiments have been repeated in 100 inde-
pendent runs. At the beginning of each run, the values wi
of the interpolator are randomly initialized and the learn-
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Figure 36: Barycentric interpolator schema for the Yaw policy.

ing procedure starts. The effectiveness of each episode is
measured as the total reward per episode perceived. Even
though the barycentric algorithm uses two policies, one for
the Sway and another for the Yaw, there is only one reward
function, defined in Figure 31, which gives the same dis-
crete values to both policies. As described in the previous
section, an episode ends either every 150 iterations or when
the robot loses visual contact with the cable in the image
plane. When an episode ends, the robot position is reset to a
random position and orientation with the cable in the image
plane. The decay factor of the eligibility is set to λ = 0.98
and the learning rate to α = 0.001, which have been found
experimentally. Figure 37 shows the learning evolution of
the GPOMDP algorithm using a barycentric interpolator as
the function approximator. These results are the mean of
100 independent runs. The 95% confidence intervals are also
shown. For every independent run, the maximum number
of episodes has been set to 2000. For every episode, the total
amount of reward perceived is calculated.

After running 100 independent runs with the barycentric
interpolator approximator, the average reward per episode
once the optimal policy is learnt is set around -10, slightly
better than the average reward reached by the ANN (best
value about -12). The average number of episodes needed
to learn this optimal policy is set around 103 episodes,
approximately equal to that of the ANN. These results show
a convergence speed similar to the one achieved by the
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Figure 37: Learning evolution with respect to the number of
episodes of the GPOMDP algorithm with the barycentric
interpolator function approximator. Results averaged
over 100 independent runs.

ANN approximator. The next section compares the results
obtained with both methodologies.

6.2.4 Comparative results

Figure 38 compares the results obtained with both approx-
imators. As can be seen, the performance reached by the
barycentric interpolator approximator (average reward of
-10 per episode) is slightly better than the one obtained with
the ANN approximator (average reward of -12 per episode)
while the convergence speed of both methodologies is simi-
lar, around 103 episodes. Although the results achieved with
the barycentric interpolator are quite better, the simplicity
and the total amount of stored data of the ANN function
approximator favor the last one. The ANN used is a very
simple one-hidden-layer ANN configuration with 4 input
nodes, 3 hidden nodes and 2 output nodes stores 18 weights.
Adding the eligibility trace parameter for each weight, the
total amount of stored data for the ANN approach is equal
to only 36 parameters. On the other hand, the barycentric
approach uses two independent policies, one mesh of 100
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Figure 38: Comparison of the simulated results obtained when
using an ANN and as barycentric interpolator with the
GPOMDP in a Cable Tracking Task. Results averaged
over 100 independent runs.

cells for the Yaw DoF and another for the Sway DoF. As
detailed in Section 3.4.2, the approximator parameters to be
updated at each iteration are located at the intersections of
the mesh, having a total of 121 parameters for each mesh,
242 needed for both policies. Adding the eligibility trace
for each parameter, the total amount of stored data for the
barycentric interpolator approach is equal to 484 parame-
ters, which compared to the 36 parameters required by the
ANN represents a huge difference.

The simulation results obtained in the cable tracking task
using two different function approximators do not show
great differences between them. A general overview of the
results obtained demonstrate that the GPOMDP approach is
able to converge to an optimal or near optimal policy for
this particular simulation of a cable tracking task. Going
one step further, a deep analysis of the data suggests that
the application of a pure PG algorithm in a real task can
be slow, unstable and rigid, with low capabilities of fast
adaptation to changing conditions in the real world.
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6.3 pg versus ac, the cartpole problem

With the aim of finding faster and more flexible algorithms,
this section presents another comparison. This time, the
GPOMDP algorithm faces the NAC algorithm in the Cartpole
Balancing benchmark. As discussed in Section 2.8, AC meth-
ods try to combine the advantages of PG algorithms with
VF methods. The actor’s PG gives convergence guarantees
while the critic’s VF reduces variance of the policy update
improving the convergence rate of the algorithm. The result
is a very fast algorithm with high adaptation capabilities.
Aiming for the best comparison, both approaches use the
same function approximator, a linear parameterized basis
function, to represent the policy. This section first describes
the cartpole task. Then, the GPOMDP algorithm is applied
to the problem. After showing the performance of a pure
PG method, the NAC is applied to the same task. Finally, a
comparison of the performance of both approaches is given.

6.3.1 The Cartpole Balancing definition

The cartpole balancing problem, like the mountain-car task,
is another well-known benchmark in RL [152, 137]. As with
the mountain-car task, it has been designed to evaluate
the the convergence and generalization capabilities of RL
algorithms. In the cartpole balancing task, a pole with a
point-mass on its upper end is mounted on a cart acting
as an inverted pendulum. Control actions move the car
forward and backward in order to stabilize the pole on its
top. Whereas a normal pendulum is stable when hanging
downwards, an inverted pendulum is inherently unstable
and must be actively balanced in order to remain upright,
either by applying a torque at the pivot point or, as in this
case, by moving the pivot point horizontally as part of a
feedback system. Figure 39 shows the cartpole scenario.

The cartpole dynamics have been linearized along the ver-
tical point of the pole [116]. The state vector x is represented
by x = (p, ṗ, θ, θ̇) containing four continuous variables: the
position p of the cart and its derivative ṗ together with the
pole angle θ and its derivative θ̇. The bounds of the position
p of the cart is −1.5 6 p 6 1.5 while the pole angle limits
are −π/6 6 θ 6 π/6. Action a is a continuous variable
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Figure 39: The cartpole balancing task domain.

with bounds −1 6 a 6 1. The cartpole dynamics, which
determines the state evolution, is defined by
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Here τ = 1/60s, υ = 13.2s−2 and g = 9.81m/s2. The re-
ward function is a continuous negative one, depending
on the state and the action taken, given by the expression
r(x,a) = −xTQx − aTRa, Q and R being scalar matrixes
experimentally tuned to adjust the weight of the state and
action values in the final reward contribution. The learning
algorithm is trained in an episodic task. An episode ends ei-
ther when the cart or the pole leave its boundaries or when
a maximum of 200 iterations have elapsed. Whenever this
happens, a new episode is started at a random position and
velocity around the zero vector. This problem is sufficiently
difficult to serve as a reference for this comparison.
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Figure 40: Learning evolution with respect to the number of
episodes of the GPOMDP algorithm in the cartpole bal-
ancing task. Results averaged over 100 independent
runs.

6.3.2 Results obtained with the PG algorithm

The PG algorithm chosen for this comparison is again the
GPOMDP algorithm. As stated at the beginning of this sec-
tion, the policy is approximated by means of a parameter-
ized basis function. The policy is specified as π(x,a,K) =

N(a|Kx,σ2), where its output is the result of a linear combi-
nation of the state vector values and the learned parameters
vector K, following the expression a = k1x1 + k2x2 + k3x3 +

k4x4. A Gaussian distribution with the basis function out-
put as mean and a fixed variance of 0.1 is used to insure
some stochasticity around a chosen action.

The decay factor of the eligibility is set to λ = 0.9 and
the learning rate to α = 0.01, which have been found ex-
perimentally. Weight matrixes for the reward calculation
have been set to Q = diag(1.25, 1, 12, 0.25) and R = 0.01
as in [116]. The experiments have been repeated in 100 in-
dependent runs. At the beginning of each run, the policy
parameter vector K is randomly initialized and the learn-
ing procedure starts. The effectiveness of each episode is
measured as the total reward per episode perceived by the
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Figure 41: Learning evolution with respect to the number of
episodes of the AC algorithm in the cartpole balancing
task. Results averaged over 100 independent runs.

current policy. As described previously, an episode ends
either every 200 iterations or when the pole falls down and
the episode resets. Figure 40 shows the learning evolution
of the GPOMDP as a mean of 100 independent runs. The 95%
confidence intervals are shown.

After running 100 independent runs with the PG algo-
rithm, the average reward per episode once the optimal
policy is learnt is set around -3. The average number of
episodes needed to learn this optimal policy is approxi-
mately 103 episodes.

6.3.3 Results obtained with the AC algorithm

The AC algorithm chosen for this comparison is the NAC al-
gorithm described in Section 3.5. This algorithm has already
been applied in simulation to solve the cartpole task in [116].
Those experiments are reproduced in this dissertation with
minor changes in order to obtain comparative results be-
tween AC techniques and pure gradient algorithms. The
part of the algorithm corresponding to the actor is rep-
resented by the same Gaussian distribution described in
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the previous approach π(x,a,K) = N(a|Kx,σ2). The basis
function approximator combines the state vector values
and the learned parameters vector K, following the expres-
sion a = k1x1 + k2x2 + k3x3 + k4x4. The variance σ2 of the
distribution is fixed at 0.1. Additional basis functions are
chosen to represent the critic. These basis functions se-
lected for the comparison are the same ones used in [116]
φ(x) = [x21, x1x2, x1x3, x1x4, x

2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4, 1].

The decay factor of the eligibility is set to λ = 0.8 and
the learning rate to α = 0.01, which have been found ex-
perimentally. A discount factor for the averaged reward is
set to γ = 0.95 and a forgetting factor for the matrixes A
and b has been set to β = 0.9. Weight matrixes for the re-
ward calculation have been set to Q = diag(1.25, 1, 12, 0.25)
and R = 0.01 as in [116]. For every iteration, the policy
is updated only when the angle 6 (wt+1,wt) 6 ε = π/180.
The experiments have been repeated in 100 independent
runs. At the beginning of each run, the policy parameter
vector K is randomly initialized and the learning procedure
starts. The effectiveness of each episode is measured as the
total reward per episode perceived by the current policy.
As described previously, an episode ends either every 200

iterations or when the pole falls down and the episode re-
sets. Figure 41 shows the learning evolution of the GPOMDP
algorithm as a mean of 100 independent runs. The 95%
confidence intervals are shown.

After running 100 independent runs with the NAC algo-
rithm, the average reward per episode, once the optimal
policy is learnt, is set around -1, evidencing slightly better
results than the ones obtained with the GPOMDP, which
got their best mark at -3. The average number of episodes
needed to learn this optimal policy is approximately 8x102

episodes, around 200 episodes faster than the PG. The next
section extracts some conclusions about both methods for
this particular task.

6.3.4 Comparative results

Figure 42 compares the results obtained with the NAC and
the GPOMDP algorithm in the cartpole balancing task. As
can be seen, the performance reached by the NAC (average
reward of -1 per episode) is slightly better than the one
obtained with the GPOMDP algorithm (average reward of
-3 per episode). Also, the convergence speed of the NAC
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Figure 42: Learning evolution comparison with respect to the
number of episodes between the NAC and the GPOMDP

algorithm. Results averaged over 100 independent
runs.

(around 8x102 episodes) is higher than the one obtained
with the GPOMDP algorithm (around 103 episodes). These
performance results clearly favor the NAC. With regard
to data storage and computational requirements, indepen-
dently from the function approximator chosen, AC methods
require more storage space and calculation than a simple PG
algorithm because, apart from the actor’s parameters, the
critic has its own set of parameters to be updated at each
iteration step. Even so, the difference between the number
of parameters used by both methods is not very high and
do not represent a drawback for the final on-line learning
purpose of this dissertation.

Paying attention to the 95% confidence intervals illus-
trated in Figures 40 and 41, the variability of both methods
over 100 runs again favors the NAC. The AC method has
smaller variance and presents solid learning curves, all very
similar, from the first run to the last. On the other hand,
the GPOMDP algorithm shows great differences between
the different runs, especially at the beginning of each one,
denoting a fragile and unstable learning curve with a high
risk of getting stuck in a local optima.
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Figure 43: Image of Ictineu AUV in the CIRS facility while attempt-
ing a cable tracking task. The cable is placed diagonally
to exploit the maximum length of the bottom of the
pool.

6.4 ictineu auv learns a real underwater task

Definitively, the experimental results obtained in previous
trial after applying the different methodologies described in
Section 3.4 and Section 3.5, give the AC methods a great ad-
vantage over pure PG techniques. Although the convergence
speed achieved by the AC algorithm is notably higher than
the one showed by the GPOMDP approach, for the kind of
RLPs solved in this dissertation, it may not be enough. The
final experimental proposal presented in this thesis aims to
reduce the convergence times of an AC algorithm like the
NAC algorithm combining it with one of the speed up tech-
niques discussed in Section 3.6. The idea is to build a fast
initial policy using a computer simulator which contains an
approximation model of the environment for, in the second
step, transfer it to the Ictineu AUV to continue the learning
on-line. The RLP to solve is the underwater cable tracking
task. The artificial underwater scenario has been built at
the CIRS facility at the University of Girona (see Figure 43),
described in Section 5.3.
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Figure 44: Learning phases.

6.4.1 The "two-step" learning approach

As can be seen in Figure 44, the learning process of the
proposed method is split into two steps. First, as shown in
Figure 44(a), the learner interacts with the simulator, build-
ing an initial policy. During this phase, the NAC algorithm is
trained in the simulator. The simulated experiments begin
by setting parameterized initial basis functions for both, the
actor and the critic. An approximated model of the environ-
ment emulates a robot with the same DoFs as the real one.
The sampling time of the simulator is set equal to the one
offered by the real robot. Actions, forces, accelerations and
velocities are scaled to match the real ones. As shown in
Figure 44(b), once the simulated results are accurate enough
and the algorithm has acquired enough knowledge from
the simulation to build a secure policy, in the second step,
the learned-in-simulation policies are transferred to the
robot and step two starts. The actor and critic parameters
are transferred to the real robot to continue the learning
process on-line in a real environment, improving the initial
policy. During the second step, the NAC algorithm contin-
ues its execution, this time, in the software architecture of
the robot. Since the simulated model and environment are
just approximations, the algorithm will have to adapt to the
real world. An important idea is that, once the algorithm
converges in the real environment, the learning system will
continue working forever, being able to adapt to any future
change.
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Figure 45: Learning evolution for the Sway policy. Comparison
with respect to the number of episodes between the
NAC and the GPOMDP algorithms. Results averaged
over 100 independent runs.

6.4.2 NAC algorithm configuration

For both steps, the simulated and the real one, the state
of the environment is represented by a four-dimensional
vector containing 4 continuous variables, (Θ, δΘδt , xg, δxgδt )
where Θ is the angle between the Y axis of the image plane
and the cable, xg is the X coordinate of the mid point of the
cable in the image plane and, finally, δΘδt and δxg

δt are Θ and
xg derivatives respectively. The bounds of these variables
are −π

2 rads 6 Θ 6 π
2 rads; −1rads/s 6 δΘ

δt 6 +1rads/s;
−0.539 6 xg 6 0.539 (adimensional bound scaled from
the size of the image in pixels) and −0.5 6 δxg

δt 6 +0.5
(adimensional bound derived from xg). From this input
state, the robot makes decisions concerning two DoFs: the Y
movement (Sway) and the Z axis rotation (Yaw). Therefore,
the continuous action vector is defined as (asway,ayaw)
with boundaries −1 6 asway 6 +1 and −1 6 ayaw 6 +1.
The X movement or Surge of the vehicle is not learned. A
simple controller has been implemented to control the X
DoF; whenever the cable is centered in the image plane (the
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Figure 46: Learning evolution for the Yaw policy. Comparison
with respect to the number of episodes between the
NAC and the GPOMDP algorithms. Results averaged
over 100 independent runs.

cable is located inside the 0 reward boundaries) the robot
automatically moves forward asurge = 0.3m/s. If the cable
moves outside the good limits or the robot misses the cable,
it stops moving forward asurge = 0m/s.

The main policy has been split into two subpolicies. asway
actions cause Y displacements on the robot and, therefore,
X displacements on the image plane. Then, it can be easily
noticed that asway actions directly affect the position of
xg along the X axis of the image plane together with its
derivative. In the same way, ayaw causes rotation around
the Z axis and, therefore, Θ angle variations in the image
plane. Although learning uncoupled policies certainly re-
duces the overall performance of the robot, this method
greatly reduces the total number of stored parameters, mak-
ing it easier to implement. The actor policies for Yaw and
Sway are described as normal gaussian distributions of the
form π(x,a,K) = N(a|Kx,σ2), where the variance σ2 of the
distribution is fixed at 0.1. The basis function approximator
combines the state vector values and the learned parame-
ters vector K, following the expression a = k1x1+ k2x2. The
policy parameter vectors K for Sway and Yaw policies are
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Figure 47: Real Θ angle measurements extracted from various in-
dependent samples. These results show the initial per-
formance of the learned-in-simulation policies trans-
ferred to the real robot.

randomly initialized at the beginning of the experiment.
Additional basis function for Sway and Yaw critic parame-
terization are chosen as φ(x) = [x21, x1x2, x

2
2, 1], which exper-

imentally have proven to be good enough to represent both
functions.

A continuous function has been designed to compute
specific rewards for each learned policy. Rewards are given
by r(xt,ut) = xTtQxt + u

T
tRut with Qsway = diag(1.1, 0.2)

and Rsway = 0.01 for Sway DoF and QYaw = diag(2, 0.25)
and RYaw = 0.01 for the Yaw DoF. Q ′s and R ′s values have
been tuned experimentally. The learning parameters have
the same value for both policies. The learning rate has
been fixed to α = 0.01 and the decay factor of the eligi-
bility has been set to λ = 0.8. A discount factor for the
averaged reward is set to γ = 0.95 and a forgetting fac-
tor for the matrixes A and b has been set to β = 0.9. For
every iteration, the policy is updated only when the an-
gle between to consecutive gradient vectors accomplishes
6 (wt+1,wt) 6 ε = π/180.
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Figure 48: Real xg measurements extracted from various inde-
pendent samples. These results show the initial perfor-
mance of the learned-in-simulation policies transferred
to the real robot.

6.4.3 GPOMDP algorithm configuration

For performance comparison purposes, the results obtained
with the NAC algorithm during the simulated step 1 are com-
pared with the GPOMDP tested in the same conditions. The
GPOMDP algorithm has been implemented using barycentric
interpolators as function approximators, and, similarly to
the NAC, the main policy has been split into two subpolicies.
The state vector input of the Sway policy is (xg, δxgδt ) while
the state vector input of the Yaw policy is (Θ, δΘδt ). Each
policy outputs a continuous scalar value which represents
the action to be performed, asway for the Sway policy out-
put and ayaw for Yaw. Differing from the experiments in
Section 6.2.3, where the algorithm performs the same simu-
lated task with two different function approximators, the
reward function used this time is not discrete. Instead, the
PG method uses the same continuous reward function im-
plemented in the NAC, given by r(xt,ut) = xTtQxt + u

T
tRut

with Qsway = diag(1.1, 0.2) and Rsway = 0.01 for the Sway
DoF and QYaw = diag(2, 0.25) and RYaw = 0.01 for the Yaw
DoF. The utilization of the same reward function allows
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Figure 49: Policy improvement over different runs of real learn-
ing. Evolution of Θ angle performance.

comparative results between these two algorithms but gives
different final results from those obtained in Section 6.2.3.

6.4.4 Step 1, simulated learning results

The computed model of the underwater robot Ictineu AUV
navigates a two dimensional world at a 0.8 meter height
above the seafloor. The simulated cable is placed on the
bottom in a fixed position. The robot has been trained in
an episodic task. An episode ends either after 150 iterations
or when the robot misses the cable in the image plane,
whatever comes first. When the trial ends, the robot position
is reset to a random position and orientation around the
cable’s location, allowing any location of the cable within
the image plane at the beginning of each trial. According to
the value of the state and action taken, a scalar immediate
reward is given at each iteration step.

The experiments in the simulation step have been re-
peated in 100 independent runs. At the beginning of each
run, the policy parameters are randomly initialized for each
one of the policies and the learning procedure starts. The
effectiveness of each episode is measured as the total re-
ward per episode perceived by the current policy. Figure 45
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Figure 50: Policy improvement over different runs of real learn-
ing. Evolution of xg angle performance.

shows the learning evolution of the Sway policy applying
the NAC algorithm as a mean of 100 independent runs. The
learning curve obtained under the same conditions with
the GPOMDP algorithm is also depicted. The 95% confidence
intervals for both curves are shown. After running 100 inde-
pendent runs with the NAC algorithm, the average reward
per episode once the optimal Sway policy is learnt is set
around -15, notably better results than the ones obtained
with the GPOMDP, which got their best mark at -35. The
average number of episodes needed by the NAC to learn
this Sway optimal policy is approximately 11x102 episodes,
while the GPOMDP needs twice the number of episodes to
obtain its best result, which is still worse than the best one
obtained by the NAC.

Figure 46 shows the same learning comparison, but this
time for the learning evolution of the Yaw policy. The aver-
age reward per episode obtained by the AC algorithm once
the optimal Sway policy is learnt is set around -6. Again
these results are better than the ones obtained with the
PG, which got their best mark at -19. The average number
of episodes needed by the NAC to learn this Yaw optimal
policy is approximately 14x102 episodes, while the GPOMDP
reaches average reward values close to its best mark at rel-
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Figure 51: Accumulated reward progression for 5 independent
tests. Reward shown is the result of adding the accu-
mulated reward for both Sway and Yaw policies.

atively early episodes 6x102. Once the learning process is
considered finished, resultant policies obtained with the
NAC algorithm with its correspondent parameters are trans-
ferred to the underwater robot Ictineu AUV, ready to be
tested in the real world.

6.4.5 Step 2, real learning results

At the beginning of step 2, the learned-in-simulation poli-
cies are evaluated on the real robot. These policies, one for
the Sway DoF and another for the Yaw DoF, are transferred
to the Ictineu AUV and, before continuing with the policy
improvement on-line, initial performance samples are ex-
tracted during various attempts by the robot to try to center
the cable within the image plane. Figure 47 shows real data
concerning the measured values of the Θ angle. In the same
way, Figure 48 shows real samples of data regarding xg.

The results obtained with the learned-in-simulation poli-
cies on the real robot show, despite some major oscillations
at the beginning of each sample, a good performance of
both simulated policies, allowing the robot to drive safely
into the underwater scenario. Since this basic knowledge
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Figure 52: A particular learned policy confronts different ca-
ble configurations. Upper-left image: Configuration 1,
Upper-right image: Configuration 2, Bottom-left image:
Configuration 3, Bottom-right image: Configuration 4.

acquired in simulation has passed the tests, the transferred
policies are ready to start the real learning on the robot. The
main objective of the on-line real learning step is to improve
the learned-in-simulation policies while interacting with
the real environment. As policies improve, the oscillations
of Θ and xg observed in Figure 47 and Figure 48 should be
reduced, smoothing the robot’s movements while tracking
the cable.

Figure 49 shows the evolution of the state variable Θ
along different learning runs. The first run, depicted with
black color, illustrates the performance of the Θ angle after
90 seconds of on-line learning. Each run lasts approximately
90 seconds, which corresponds to the time needed by the
robot to make a full run from one corner of the pool to
the opposite, navigating around 9 meters of cable. Once
the robot reaches the corner of the pool, it automatically
disconnects the learning behavior and enables another be-
havior which makes the robot turn 180◦ around the Z axis,
facing the cable in the opposite direction. Then it enables
the learning behavior again and a new run starts. Figure 49

shows how, as the learning process goes on, policies im-
prove significantly. After 20 trials (around 1800 seconds
from the beginning) the blue line shows a smoother Θ evo-
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Figure 53: A particular Θ policy performance over the different
cable configurations showed in Figure 52.

lution along the run, denoting a significant improvement of
the trajectories. Figure 50 depicts the results regarding the
state variable xg along the same learning runs.

Figure 51 shows the accumulated reward evolution dur-
ing the real learning phase. This figure is the result of
adding the total accumulated reward per trials of both poli-
cies, Sway and Yaw, over five independent tests of 40 runs
each, remembering that each run lasts approximately 90
seconds, and represents a full length run from one side of
the cable to the other, navigating along 9 meters. It can be
observed that in all 5 tests, the algorithm converges to a
better policy as shown by the increasing evolution of the
averaged rewards.

6.4.6 Algorithm adaptation capabilities

The last section of these experimental results looks into the
adaptation capabilities of the NAC algorithm. Up to this
point, the various tests performed demonstrate that this
algorithm is able to solve various RLPs in short amounts
of time, clearly outperforming other algorithms like QL or
simple PG techniques. This section aims to test the response
of the algorithm to sudden changes in the environmen-
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Figure 54: A particular xg policy performance over the different
cable configurations showed in Figure 52.

tal conditions once a particular policy has been learned.
These changes will require a fast policy readaptation in
order to successfully continue developing the task. The
first adaptation experiment consists of modifying the ca-
ble’s position and trajectory along the pool floor. Therefore,
once the on-line real learning period is considered finished
and a particular policy for both the Sway and the Yaw
has been learned, the cable position is changed 4 different
times. Figure 52 shows the 4 different cable configurations
adopted. As can be seen in the figure, the top images cor-
respond to a chicane configuration with close cable turns;
the upper-left configuration starts with a left turn, whereas
the upper-right one starts with a right turn. The bottom
images correspond to a cable configuration with a big wide
turn; the bottom-left configuration makes a wide right turn,
whereas the bottom-right configuration makes a wide left
turn.

Figure 53 shows the evolution of the state variable Θ
for each of the 4 different configurations described above.
Figure 54 shows the evolution of the state variable xg for the
same configurations. Results show that the policy learned
for a particular situation is also a good one for tracking
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Figure 55: Total averaged reward evolution over 5 independent
tests. Initially the setpoint is 0.8 meters. At run 40 the
setpoint changes to 1.2meters before finally recovering
its original value of 0.8 at run 70.

a cable positioned in a wide range of different curvature
angles that may differ from the original one.

After proving that the learned policies work with differ-
ent cable configurations, a second set of experiments aims
to evaluate if the NAC algorithm is able to adapt itself to
unexpected changes in the environmental conditions and
continue the learning process. In order to do so, a variation
in the altitude with respect to the cable has been introduced
in the middle of the learning process. As detailed in previ-
ous sections, the underwater robot autonomously navigates
at a predefined constant height above the pool floor. For this
set of tests, during the learning process, instead of track-
ing the cable at 0.8 meters with respect to the pool floor,
the altitude will suddenly change to 1.2 meters. Since the
altitude is not a part of the state input of the algorithm, a
variation of this term causes a variation of the RL dynamics
and, therefore, current policies are no longer optimal.

Figure 55 shows the accumulated reward evolution of the
5 sample tests initially presented in Figure 51. As can be
seen in this figure, once the learning curves are stabilized,
a sudden change in the robot’s altitude is introduced (at
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around the 40th run the robot’s altitude is changed from
0.8 meters to 1.2 meters). This change can be seen in the
graph as a sudden change in the reward value. At this
point, rewards become better because the robot navigates
at a higher altitude and tracking the cable becomes easier,
as it appears smaller in the image plane. From run 40 to
run 50, the robot readapts itself to the new environmental
conditions and the policies improve. From run 50 to run
70 the learning has stabilized itself and robot navigates at
1.2 meters altitude with its new, improved policies. It can
be observed how the 5 independent tests converged to a
better policy and achieved similar accumulated rewards.
At around run 70, the altitude changes again, recovering
its initial value of 0.8 meters. 15 runs later, the averaged
rewards stabilize at the same values before the altitude
changes were introduced, denoting good on-line adaptation
capabilities of the algorithm.



7
C O N C L U S I O N

This chapter concludes the work presented throughout this
dissertation. It first summarizes the thesis by reviewing the
contents described in each chapter. It then points out the
research contributions extracted from the proposals and the
experiments. In addition, all aspects which have not been
accomplished as well as some interesting future research
issues are commented on in the future work section. Then,
the research framework in which this thesis was achieved
is described. Finally, the publications related to this work
are listed.

7.1 summary

This thesis is concerned with the field of autonomous un-
derwater robots and the problem of action-decision. The
methodology chosen to solve such a problem is Reinforce-
ment Learning (RL). Throughout this dissertation, different
RL techniques for autonomy improvement of Autonomous
Underwater Vehicles (AUVs) have been applied to the Ictineu
AUV, one of the research platforms available in the Com-
puter Vision and Robotics Group (VICOROB) at the Univer-
sity of Girona. Moved by the considerable interest that, over
the past few years, has arisen around AUV applications, this
thesis demonstrates the feasibility of learning algorithms
to help AUVs perform autonomous tasks. Particularly, this
thesis concentrates on one of the fastest maturing, and prob-
ably most immediately significant, commercial application:
Cable and Pipeline Tracking. In this way, this thesis presents
Policy Gradient (PG) techniques, a particular class of RL
methods, as an alternative to classic Value Function (VF)
algorithms. The final experiments demonstrate that the
best results are obtained when combining both VF and PG
techniques into a particular class of algorithms called Actor-
Critic (AC) methods.

Chapter 2 has overviewed the field of RL and presented
its main principles. The different functions that intervene in
the learning process have been described and the most rep-
resentative solutions for solving the Reinforcement Learn-

151
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ing Problem (RLP) have been presented. Among all the RL
methodologies, this chapter has given special interest to
those techniques especially designed to work in the real
domain. Two kinds of algorithms, VF algorithms and PG
algorithms, have been analyzed and compared, and the
main advantages and drawbacks of each one when dealing
with real robotic tasks have been detailed. This theoretical
and practical survey concludes with a particular combina-
tion of both methods which exploits the advantages of VF
and PG, called AC algorithms. These kinds of algorithms
demonstrate the best performance for solving real robotic
tasks. Practical applications of all theoretical algorithms
are discussed at the end of this chapter. Some conclusions
and ideas have been extracted in order to design learning
methodologies for underwater robots that represent the
main contribution of this dissertation.

Chapter 3 has analyzed and proposed the utilization
of different PG techniques for AUVs in a real robotic task:
underwater cable tracking. The first lines of this chapter
have focused on a description of control architectures and
how RL methodologies merge to them. A brief discussion of
the evolution of behavior-based control architectures for real
robots has been detailed, reviewing the history of control
architectures for autonomous robots. The generalization
problem, which highly affects real robotics, has also been
described. The most common approaches to confront this
problem and their application to robotic tasks have been
overviewed. The GPOMDP algorithm is the first algorithm
proposed in this thesis to build a policy for an RLP in a
real autonomous underwater task. Two different function
approximators have been used to solve the problem: first an
Artificial Neural Network (ANN) and secondly a barycentric
interpolator. The second algorithm proposed for the second
set of results is an AC method, called Natural Actor-Critic
(NAC). In order to speed up the learning process, various
techniques have been briefly discussed and, among them,
a two step learning process which shares simulated and
real learning has been chosen as the best option to reduce
convergence time. The final proposal, which represents the
main contribution of this thesis, is made at the end of the
chapter. The proposal consists of the application, in a real
underwater robotic task, of an RL technique such as NAC
in a two step learning process. For this purpose, the NAC
algorithm is first trained in a simulated environment where
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it can build a fast initial policy. In the second step the policy
is transferred to the real robot to continue the learning
process on-line in a real environment.

As introduced in Chapter 3, to decrease the overall learn-
ing period, a model of the environment is needed for the
initial learning phase. For this purpose, Chapter 4 has de-
scribed how to compute an approximated model of the
underwater vehicle Ictineu AUV that will be used to test
the learning algorithms proposed in Chapter 3. This chap-
ter has described the dynamics equations of motion of
an underwater vehicle as well as the assumptions made
to adapt the general equation to our particular vehicle. A
Least Squares (LS) identification method has been proposed
and applied to identify the vehicle’s parameters.

Once the proposal has been presented, Chapter 5 has
reported the main characteristics of the different elements
used to build the experimental setup. First, a description
of the Ictineu AUV and its control architecture has been
detailed. The problem and the motivations which lead to
the selection of an underwater cable tracking task have been
described. The algorithm used to estimate the position and
orientation of the cable within the image plane has been pre-
sented. The Computer Vision and Robotics Group facility
at the Centre d’Investigació en Robòtica Submarina (CIRS)
where all the tests have been performed is described at
the end of this chapter. Finally, in Chapter 6, the results
have been presented, organizing them in a series of sections
which intend to show the experimental progression carried
out with the different algorithms proposed. First, a compar-
ison between the Q-Learning (QL) method and the GPOMDP
algorithm trying to solve the mountain-car benchmark has
been presented. In a second set of tests, the Baxter and
Bartlett algorithm has been tested using different function
approximators in a simulated cable tracking task. A third
round of tests has compared the Baxter and Bartlett PG with
an AC. The results have proven Peter’s NAC algorithm as
the most suitable method for the underwater cable tracking
task and has been chosen for the final tests. The final exper-
iments presented in this thesis have reduced convergence
time by adding an initial computer simulator step to the
learning process and, in the second step, the transferred
policy has continued the learning process on-line.

The purpose of this application is not to demonstrate
that RL performs better than other learning techniques,



154 conclusion

simple controllers or a human operator. Our purpose is
to demonstrate the feasibility of RL techniques to learn
autonomous underwater tasks. The cable tracking task can
be considered an easy one, but, to the best of the author’s
knowledge, it is the first underwater application where
online learning takes place. RL algorithms demonstrate high
adaptation capabilities, and the two-step NAC method has
also proven to be so when performing this particular cable
tracking task. The algorithm has successfully adapted itself
to different cable curvatures, different distances from the
cable and different tracking speeds. Of course, there are
limits and probably beyond them new methodologies will
show a better response but, as stated before, this work
represents our first step. As future work, we plan to apply
RL to other tasks: more challenging missions, open waters
with unexpected and changing currents, introduce random
motor failures, different sensor information or enhanced
simulation algorithms for faster learning.

7.2 contributions

This thesis work has accomplished the proposed goal of
studying and using the PG-based RL algorithms for the
development of RL-based behaviors and their application to
autonomous underwater robotic tasks. In the development
of this goal, various research contributions were achieved.
These contributions are listed below.

online learning in underwater robotics. Use of
RL in robotics is very common nowadays. However,
there are not many approaches which perform online
learning and, to the best of the author’s knowledge,
this thesis presents one of the first online robot behav-
ior learning in the underwater domain. It is, therefore,
an important contribution to demonstrate the feasibil-
ity of PG methods in a real-time task, especially in a
complex domain such as underwater robotics, with a
two-step method proposal which greatly reduces the
overall convergence time.

integral ls model identification. The integral LS
identification procedure carried out to identify the
dynamic equations of the Ictineu AUV also represents
a strong contribution to the underwater vehicles mod-
eling field. The use of the integral of the LS error
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instead of the error itself gives a much more accurate
model which, although being identified as an uncou-
pled model by independent DoFs, can be later used
in the coupled model with minimal error in the final
performance.

learning underwater tasks. Nowadays, there are a
few underwater robots that execute some simple tasks
autonomously. In fact, the cable tracking task, which
the Ictineu AUV has learnt to perform, can be easily
programmed using common control theory. This dis-
sertation aims to introduce the application of learning
techniques to the development of more challenging
underwater tasks. Having a robot continuously learn-
ing to perform a task can be very valuable, especially
for complex operations difficult to reprogram with
control algorithms when adapting to new scenarios.
The challenges of learning in such a changing envi-
ronment like underwater domains are huge.

underwater domains and rl. Most of the work pub-
lished on RL real applications to robotic tasks are not
concerned with underwater scenarios. To the best of
the author’s knowledge, the approach presented in
this thesis is the first work on the utilization of PG
algorithms for behavioral learning of autonomous un-
derwater robots. This contribution opens the door to
the use of PG methods in new application domains.

7.3 future work

During the development of this thesis, new problems and
topics of interest for future research have arisen. The follow-
ing points are considered the most logical lines to continue
this research:

real scenarios and human demonstration. The
learning algorithms used in this thesis should be
tested in real scenarios and in more, different under-
water tasks. Operating in real scenarios like coastal
waters will introduce new challenges: unpredictable
water currents, irregular seafloor and changing light
conditions to name a few. Also, in the real world, us-
ing human demonstration of the cable following task
could significantly speed up the learning process.
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gather all available data from sensors. All the
final tests presented in this thesis use visual informa-
tion provided by the downward-looking camera to
build the state needed by the algorithm to track the
cable. The main advantage of such a visual sensor
is that, if the image is good enough to detect the
cable, the state information will be accurate and al-
most without noise, insuring a good observation of
the state which guarantees a correct learning process.
The main drawback is that most commercial appli-
cations of underwater vehicles require depths which
do not guarantee a clear and uniform illumination
of the scene even with artificial light. Thinking about
such applications would require learning algorithms
capable of getting state information from multiple
sensors, acoustic and visual, and deal with noisy state
information, especially if it comes from the acoustic
sensors.

more challenging tasks. One of the objectives of this
thesis was to demonstrate the feasibility of RL tech-
niques to learn autonomous underwater tasks. Since
the complexity of the cable tracking task presented in
the final experiments did not represent a problem for
algorithms like NAC, the development of more com-
plex tasks may offer these algorithms the opportunity
to prove themselves in more complex underwater op-
erations.

introduce learning at the mission level. As de-
scribed in Section 5.2.3, the library of behaviors which
include the RL-based behavior presented in this the-
sis are enclosed inside the control architecture at the
task level. Above this level there is the mission level,
responsible for the sequencing of the mission tasks,
selecting the set of behaviors that must be enabled
for each mission phase. At this time, the mission level
is composed of a sequence of fixed behaviors which
are triggered one after the other. Introducing RL tech-
niques at this level will make the whole architecture
more flexible and able to reorganize the tasks de-
pending on the particular situations that may happen
during the development of the mission.
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7.4 research framework

The results and conclusions presented in this thesis have
been possible after the realization of countless tests and
experiments, which were the fruit of numerous efforts made
during the development of the different research robots and
the necessary software and equipment. All the work done
during the evolution of this thesis is summarized here with
references to the most relevant research publications made
by the author. The complete list of publications can be
consulted in the next section.

At the beginning of this thesis, there were two research
robots in the Computer Vision and Robotics Group (VI-
COROB) at the University of Girona. The first was the GARBI
AUV, a large robot for operation in a real environment. The
second robot was the URIS AUV [AMI’04], a robot of re-
duced dimensions designed to operate under laboratory
conditions in a small tank. For simulation and navigation
purposes, the model of the GARBI AUV had been previously
identified following very rudimentary techniques [127]. For
the URIS AUV, a new identification process based on the
integral of the dynamics equation was carried out. The
methodology was developed in collaboration with profes-
sor Antonio Tiano of the University of Pavia. The first initial
results, where the performance of the proposed technique
was compared with the old one using the GARBI AUV, were
presented in [GCUV’03], [MMAR’03] and [MCMC’03]. The
final identification procedures for fast identification of un-
derwater robots concluded with the publication of [CEP’04].
This methodology has been used in Chapter 4 to identify
the dynamics model of the Ictineu AUV, used for the final
experiments of this dissertation. The performance of the
identified models empowered the development of an un-
derwater graphical simulator [ISCCSP’04]. This simulator
allows the user to load any of the identified underwater
robots in the lab, even working with multiple vehicles, as
well as working under different environmental conditions
depending on the task: dam inspection, cable tracking and
obstacle avoidance. Also, the models obtained have been
used to improve navigation algorithms developed for the
vehicles [WESIC’03]. Parallel to the work done with model-
ing of underwater robots, this identification methodology
has been used in collaboration with other research groups
to the identification of wheeled mobile robots with success-
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ful results [IAV’04]. The field of application of dynamic
models was very wide. In those days, the research frame
of Dr. Marc Carreras focused on the development of RL-
based behaviors for autonomous navigation of underwater
vehicles. Several conversations suggested the possibility of
applying simulators to solve one of the key problems of
learning in real robotics: slow convergence speeds.

The first research work done in RL focused on VF meth-
ods [IROS’03] and the development of behavioral control
architectures for underwater robots [WAF’04]. Due to the
low performance demonstrated by pure VF algorithms such
as QL when dealing with real environments, the interest of
this thesis moved to other RL techniques. Another class of
methods, called PG methods, used a different approach to
learn a policy. Such algorithms were easier to program than
VF algorithms and, although in general being less accurate,
they showed great capabilities when dealing with real en-
vironments. The first results obtained with PG techniques
studied the feasibility of these methods for the underwater
robots’ framework [WAF’05]. The first comparative results
between a VF method and a PG algorithm were presented
in [CCIA’05], where the QL algorithm is compared with the
GPOMDP method in the mountain-car task benchmark. Re-
sults obtained with a PG were good and the next step was to
apply them to the underwater domain performing various
simulated tasks published in [OCEANS’05], [ICINCO’05],
[IROS’06] and [ICAR’07]. With the simulated results clear,
experiments with PG techniques started to work with the
real robot, Ictineu AUV. Therefore, the tests focused on
learning an initial policy in simulation using a PG algorithm
and transfer it to the real robot to test its performance,
still without improving learning on-line. Different function
approximators (ANN and barycentric interpolators) were
studied and utilized during these tests, looking for the
one which offered the best results for the particular task
of underwater cable tracking [NGCUV’08], [ICINCO’08],
[ECAI’08] and [IROS’08].

The results obtained in these publications, although be-
ing quite good, showed low adaptation capabilities of the
GPOMDP algorithm which would represent a problem when
attempting real online learning with the Ictineu AUV. A
new class of RL methods, called AC algorithms, which com-
bine good properties of VF and PG techniques, were studied
and applied to the final experiments of this thesis. Thus, a
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variation of an AC proposed by Jan Peters called NAC was
applied to the final round of experiments. In these tests,
the robot Ictineu AUV learned to perform an underwater
cable tracking task in a two step learning process. First an
initial policy is approximated by means of a simulator and,
in the second step, it is transferred to the real robot where
the learning continues on-line, improving the initial policy
and adapting itself to sudden changes in the environment
that may appear in the future [ICRA’10].

7.5 related publications

Model identification of underwater robots
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